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Abstract : The stability of global financial systems relies 

heavily on the ability of institutions to anticipate and 
withstand extreme market deviations. Traditional stress 

testing methodologies, primarily predicated on historical 
simulation or parametric Monte Carlo methods, often fail to 
capture the complex, non-linear dependencies and fat-tailed 

distributions inherent in financial time series during black 
swan events. This paper introduces a novel framework for 

financial stress testing utilizing diffusion-based generative 
models. We propose a conditional diffusion probabilistic 
model adapted for temporal data, capable of generating 

high-fidelity synthetic market trajectories that adhere to 
user-defined stress conditions. Unlike Generative 

Adversarial Networks (GANs), which suffer from mode 
collapse and training instability, our diffusion-based 
approach ensures diverse scenario generation by iteratively 

denoising random Gaussian processes under guided 
constraints. We evaluate our model against standard 

baselines using S&P 500 and volatility index data. The 
results demonstrate that the proposed architecture not only 
reproduces the statistical properties of historical data with 

higher accuracy but also generates plausible, severe stress 
scenarios that exceed historical precedents in terms of 

severity and structural coherence. This research bridges the 
gap between state-of-the-art computer vision generative 
techniques and quantitative risk management, offering a 

robust tool for systemic risk assessment. 
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INTRODUCTION 

1.1 Background 

The domain of quantitative finance has long grappled with the 

challenge of risk assessment under uncertainty. Following the 2008 

global financial crisis, regulatory frameworks such as Basel III in 

Europe and the Dodd-Frank Act (CCAR) in the United States 

mandated rigorous stress testing for banking institutions. The 

primary objective of these tests is to evaluate the capital adequacy 

of financial entities under hypothetical yet plausible adverse 

scenarios. Central to this process is the estimation of metrics like 

Value-at-Risk (VaR) and Expected Shortfall (ES), which quantify 

potential losses at specific confidence intervals [1]. 

Traditionally, risk managers have relied on three main pillars for 

scenario generation: Historical Simulation, which bootstraps past 

returns; Parametric methods, often utilizing Generalized 

Autoregressive Conditional Heteroskedasticity (GARCH) 

processes; and Monte Carlo simulations based on stochastic 

differential equations. While these methods have served as the 

industry standard for decades, they possess inherent limitations. 

Historical simulation is constrained by the finite set of observed 

events, effectively assigning a probability of zero to any event that 

has not occurred in the past [2]. Conversely, parametric models 

frequently rely on assumptions of normality or log-normality, 

which notoriously fail to account for the leptokurtic (fat-tailed) 

nature of asset return distributions, thereby underestimating the 

likelihood of extreme market crashes [3]. 

1.2 Problem Statement 

The core deficiency in existing stress testing frameworks lies in 

their inability to generate "novel" risks. Static historical replays 

cannot anticipate structural market shifts, while standard stochastic 

models often lack the capacity to model complex, multi-modal 

dependencies across different asset classes during periods of high 

volatility. In recent years, deep generative models have emerged as 

a potential solution. Generative Adversarial Networks (GANs) and 

Variational Autoencoders (VAEs) have been applied to financial 

time series generation with varying degrees of success. However, 
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these architectures present significant technical challenges. GANs 

are notoriously difficult to train, frequently suffering from mode 

collapse—where the generator produces a limited variety of 

outputs—and failing to capture the temporal correlations essential 

for realistic market simulation [4]. VAEs, while more stable, often 

produce blurry or over-smoothed outputs that fail to retain the 

high-frequency volatility characteristics of financial markets [5]. 

Furthermore, for stress testing purposes, unconditional generation 

is insufficient. A risk manager does not merely require a random 

market path; they require a path conditional on specific adverse 

triggers, such as a 20% drop in the equity market or a sudden spike 

in interest rates. Integrating such rigid constraints into the 

generative process without distorting the underlying statistical 

manifold of the data remains an open research problem [6]. 

1.3 Contributions 

In this paper, we address these limitations by proposing a 

Diffusion-Based Market Simulator (DMS) specifically designed 

for stress testing. Diffusion probabilistic models, which have 

recently surpassed GANs in image synthesis quality, operate by 

gradually destroying data structure through forward noise injection 

and learning to reverse this process to reconstruct data from pure 

noise. We adapt this paradigm to sequential financial data. 

Our primary contributions are as follows: 

1.  We develop a temporal U-Net architecture integrated with 

attention mechanisms to capture long-range dependencies in 

financial time series, moving beyond the limitations of standard 

Convolutional Neural Networks (CNNs) in this domain. 

2.  We introduce a conditional guidance mechanism that allows for 

the precise injection of stress factors (e.g., drawdown magnitude, 

volatility shocks) into the reverse diffusion process, enabling the 

generation of coherent "what-if" scenarios. 

3.  We provide a comprehensive comparative analysis 

demonstrating that our diffusion-based approach yields lower 

distributional distances (Wasserstein metric) and higher fidelity in 

reproducing stylized facts (volatility clustering, heavy tails) 

compared to state-of-the-art GAN baselines [7]. 
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Chapter 2: Related Work 

2.1 Classical Approaches 

The evolution of market simulation techniques is deeply rooted in 

econometrics. The simplest form, Historical Simulation, assumes 

that the future will resemble the past. While intuitive, this method 

is fundamentally backward-looking and fails to account for 

structural breaks in the market regime [8]. To address this, 

parametric approaches were developed. The GARCH family of 

models, introduced by Engle and Bollerslev, became the 

cornerstone of volatility modeling. These models capture volatility 

clustering—the phenomenon where large price changes are 

followed by large price changes. However, standard GARCH 

models often struggle with multi-variate dependencies and require 

explicit specification of the error distribution, which may not align 

with empirical reality [9]. 

Monte Carlo simulations offer more flexibility by allowing the use 

of Stochastic Differential Equations (SDEs), such as the Geometric 

Brownian Motion or the Heston model for stochastic volatility. 

While powerful, calibrating these models to capture the joint 

distributions of hundreds of assets simultaneously is 

computationally expensive and mathematically intractable without 

simplifying assumptions that reduce the realism of the generated 

scenarios [10]. 

2.2 Deep Learning Methods 

The advent of deep learning brought neural networks to the 

forefront of financial modeling. Early attempts utilized Recurrent 

Neural Networks (RNNs) and Long Short-Term Memory (LSTM) 

networks to predict future prices. However, predictive models 

differ fundamentally from generative models; the former seeks the 

most likely future value, while the latter seeks to approximate the 

entire probability distribution of possible paths [11]. 

Generative Adversarial Networks (GANs) represented a paradigm 

shift. QuantGAN and TimeGAN are notable examples where 

adversarial training was applied to temporal data. TimeGAN, in 

particular, introduced a supervised loss component to preserve 

temporal dynamics alongside the adversarial objective. Despite 

these advancements, GANs in finance struggle with the 
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convergence of the minimax game, often leading to oscillating loss 

functions and unreliable scenario generation [12]. 

Variational Autoencoders (VAEs) offer a probabilistic alternative 

by maximizing the Evidence Lower Bound (ELBO). However, the 

assumption of a Gaussian prior in the latent space often forces the 

model to ignore complex tail dependencies, resulting in synthetic 

data that appears too "normal" and lacks the erratic behavior of real 

markets during stress periods [13]. 

2.3 Diffusion Probabilistic Models 

Diffusion models, introduced by Sohl-Dickstein et al. and 

popularized by Ho et al. as Denoising Diffusion Probabilistic 

Models (DDPMs), have revolutionized generative AI. These 

models define a forward diffusion process that adds Gaussian noise 

to the data and a reverse process parameterized by a neural 

network that learns to denoise. Song et al. further unified these 

discrete steps into continuous-time Score-Based Generative 

Models governed by Stochastic Differential Equations [14]. 

Recent applications of diffusion models in non-image domains 

have shown promise. In audio synthesis, WaveGrad and DiffWave 

utilize diffusion for high-fidelity waveform generation. In the 

context of time series, recent works have begun to explore 

diffusion for imputation and forecasting. However, the specific 

application of conditional diffusion models for generating adverse 

financial stress scenarios remains an under-explored niche. Our 

work builds upon the conditional generation capabilities explored 

in classifier-free guidance, adapting them to the stochastic nature 

of financial markets [15]. 

Chapter 3: Methodology 

3.1 Overview of the Framework 

Our proposed framework, the Diffusion-Based Market Simulator 

(DMS), treats financial market trajectories as samples from a high-

dimensional joint distribution. The core objective is to learn this 

distribution from historical data and then sample from conditional 

subsets of this distribution corresponding to stress scenarios. 
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The framework consists of two coupled processes: 

1.  Forward Diffusion Process (Signal Corruption): We 

systematically degrade the structure of real market data sequences 

by injecting Gaussian noise over a finite number of timesteps 𝑇, 

until the data is indistinguishable from isotropic Gaussian noise. 

2.  Reverse Diffusion Process (Signal Reconstruction): We train 

a neural network to approximate the score function (the gradient of 

the log-density) of the data, allowing us to traverse backward from 

noise to a valid market trajectory. 

3.2 The Forward Process 

Let 𝑥0 represent a sequence of asset returns of length 𝐿 across 𝐷 

assets. The forward process is a Markov chain fixed to a variance 

schedule 𝛽1,𝑑𝑜𝑡𝑠, 𝛽𝑇. For any timestep 𝑡, the transition probability 

is defined as a Gaussian distribution. As 𝑡 approaches 𝑇, the 

distribution of 𝑥𝑡 approximates a standard normal distribution 

𝑁(0, 𝐼). 

This process is devoid of learnable parameters. Its sole purpose is 

to provide the training targets for the reverse process. By using the 

reparameterization trick, we can sample 𝑥𝑡 at any arbitrary 

timestep directly from 𝑥0 without iterating through intermediate 

steps, which significantly accelerates the training data preparation 

[16]. 

3.3 The Reverse Process and Network Architecture 

The reverse process is defined as a parameterized Markov chain 

where the model learns to predict the noise added at each step, or 

equivalently, the mean of the posterior distribution. We employ a 

modified 1D U-Net architecture, adapted for time-series data. 

Standard U-Nets, used in medical imaging, utilize 2D 

convolutions. For financial time series, we replace these with 

causal 1D dilated convolutions. This ensures that the generated 

point at time 𝜏 depends only on the history and not on future 

values, preserving the temporal causality inherent in markets. 

Furthermore, we integrate Multi-Head Self-Attention mechanisms 

at the bottleneck of the U-Net. Financial markets exhibit long-

range dependencies (e.g., a volatility shock today may echo a 

shock from weeks ago). Attention layers allow the model to attend 
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to disparate parts of the sequence globally, capturing these non-

local correlations [17]. 

3.4 Mathematical Formulation 

The training objective is derived from the upper bound on the 

negative log-likelihood of the data. In practice, this simplifies to a 

weighted mean squared error between the actual noise injected 𝜀 

and the noise predicted by the neural network 𝜀𝜃. 

To rigorously formalize the continuous-time generalization which 

allows for more flexible sampling, we utilize the Stochastic 

Differential Equation (SDE) formulation. The reverse-time SDE, 

which enables us to generate samples by solving it backwards in 

time, requires the estimation of the score function 𝛻𝑥𝑙𝑜𝑔𝑝𝑡(𝑥). 

The governing formula for the reverse-time SDE is given by: 

𝑑𝑥 = [𝑓(𝑥,𝑡) − 𝑔2(𝑡)𝛻𝑚𝑎𝑡ℎ𝑏𝑓𝑥𝑙𝑜𝑔𝑝𝑡(𝑥)]𝑑𝑡+ 𝑔(𝑡)𝑑𝑜𝑣𝑒𝑟𝑙𝑖𝑛𝑒𝑤 

Where 𝑓(𝑥,𝑡) is the drift coefficient of the forward SDE, 𝑔(𝑡) is 

the diffusion coefficient, and 𝑑𝑜𝑣𝑒𝑟𝑙𝑖𝑛𝑒𝑤 is a standard Wiener 

process flowing backward in time. The neural network is trained to 

approximate the score term 𝛻𝑚𝑎𝑡ℎ𝑏𝑓𝑥𝑙𝑜𝑔𝑝𝑡(𝑥) [18]. By 

numerically integrating this equation from 𝑡 = 𝑇 to 𝑡 = 0, we 

obtain a synthetic market trajectory. 

3.5 Conditional Stress Generation 

A crucial innovation in our methodology is the conditioning 

mechanism. To perform stress testing, we cannot simply sample 

from the unconditional distribution 𝑝(𝑥). We must sample from 

𝑝(𝑥|𝑐), where 𝑐 represents the stress condition (e.g., "Market 

Return < -15%"). 

We implement this via Classifier-Free Guidance. During training, 

the network is jointly trained on both conditional and 

unconditional objectives. We randomly drop the condition 𝑐 with a 

certain probability (e.g., 0.1), replacing it with a null token. During 

sampling, the predicted noise is a linear combination of the 

unconditional noise prediction and the conditional noise prediction. 

𝑕𝑎𝑡𝜀𝜃(𝑥𝑡 , 𝑐) = (1 + 𝑤)𝜀𝜃(𝑥𝑡 , 𝑐) −𝑤𝜀𝜃(𝑥𝑡 , 𝑒𝑚𝑝𝑡𝑦𝑠𝑒𝑡) 
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𝑤 is the guidance scale. A higher 𝑤 forces the generated sample to 

adhere more strictly to the stress condition 𝑐, potentially at the cost 

of diversity. This allows risk managers to dial up the "stress" 

intensity seamlessly [19]. 

 

Figure 1: Architecture of the Diffusion 

Chapter 4: Experiments and Analysis 

4.1 Experimental Setup 

To validate the efficacy of the DMS, we utilized a dataset 

comprising daily closing prices of the S&P 500 index and the 

CBOE Volatility Index (VIX) spanning from January 2000 to 

December 2023. This period covers multiple major market stress 

events, including the Dot-com bubble burst, the 2008 Financial 

Crisis, and the COVID-19 market crash. The data was transformed 

into logarithmic returns and normalized to ensure stable training 

dynamics. 

We compared our Diffusion-Based Market Simulator (DMS) 

against three distinct baselines to represent the spectrum of 

available methodologies: 

1.  Historical Simulation (HS): Bootstrapping 10-day trajectories 

from the test set. 

2.  GARCH(1,1): A standard parametric model fitted to the 

training data residuals. 



Page 81  
 

3.  TimeGAN: A state-of-the-art adversarial model specifically 

designed for time-series generation. 

All neural network models were trained on NVIDIA A100 GPUs 

using the PyTorch framework. The diffusion model utilized 1000 

diffusion steps with a cosine noise schedule, which has been 

shown to improve sample quality in image domains and applies 

effectively here to signal data [20]. 

4.2 Evaluation Metrics 

Evaluating generative models for financial time series is non-

trivial, as there is no single "ground truth" to compare against 

pixel-wise. We relied on a suite of statistical metrics: 

1.  Wasserstein Distance: We computed the 1-Wasserstein 

distance between the distributions of the synthetic and real returns. 

This measures how much work is needed to transform the synthetic 

distribution into the real one; lower is better. 

2.  Autocorrelation Function (ACF) Score: We calculated the 

Euclidean distance between the ACF of real and synthetic data to 

evaluate how well the model captures temporal dependencies. 

3.  Tail Fidelity (ES Error): We compared the Expected Shortfall 

(at 95% and 99% confidence levels) of the generated data versus 

the hold-out test set. This is critical for stress testing, as it measures 

the accuracy of the worst-case loss estimates. 

4.  Discriminative Score: We trained a post-hoc time-series 

classifier to distinguish between real and fake data. An accuracy 

close to 50% indicates that the generator is fooling the 

discriminator effectively. 

4.3 Results and Discussion 

The quantitative results are summarized in Table 1. The Historical 

Simulation provides a baseline but fails to generate any novel 

scenarios, resulting in a high discriminative score (it is easily 

identified as "memorized" data if checked against training samples, 

though here we treat it as a distribution reference). 

Metric Historical 

Simulation 

GARCH(1,1) TimeGAN DMS (Ours) 
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Wasserstein 

Dist. (10^{-

2}) 

0.00 (Ref) 1.45 0.92 0.34 

ACF Score 

(Lag-50) 

0.02 0.18 0.11 0.05 

ES 99% Error N/A +12.5% -8.4% +2.1% 

Discriminative 

Score 

0.50 0.88 0.72 0.56 

Analysis of Distributional Fidelity: 

The DMS significantly outperforms GARCH and TimeGAN in 

terms of Wasserstein distance. GARCH models tend to 

oversimplify the return distribution, often missing the complex 

multi-modality of the data. TimeGAN improves upon this but still 

exhibits signs of mode collapse, where the generated variety is 

lower than the actual market. The diffusion model, by contrast, 

covers the support of the distribution more comprehensively. The 

iterative refinement nature of diffusion allows it to fill in fine-

grained details of the distribution that single-shot GAN generators 

often miss [21]. 

Temporal Dynamics and Tail Risk: 

The ACF score indicates that our model captures the volatility 

clustering and mean-reversion properties of the S&P 500 better 

than the deep learning baselines. Crucially, in terms of Expected 

Shortfall (ES) error, GARCH overestimated the risk (too 

conservative), while TimeGAN underestimated it (dangerous for 

risk management). The DMS showed a slight overestimation 

(+2.1%), which is generally preferred in risk management 

(conservatism) over underestimation. This suggests that the 

diffusion model successfully learned the heavy-tailed nature of the 

returns without explicit programming. 

Stress Scenario Coherence: 

When conditioned on a "Stress" vector (e.g., enforcing a 

cumulative 10-day return of -15%), the DMS produced trajectories 

that not only met the endpoint constraint but exhibited realistic 

path dynamics. Unlike simple linear interpolation or bridging used 

in Brownian bridges, the diffusion-generated paths displayed 
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realistic volatility spikes ("panic") accompanying the drawdown. 

This qualitative superiority confirms the model's utility for stress 

testing: it generates the "path to ruin" realistically, not just the ruin 

itself [22]. 
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Chapter 5: Conclusion 

5.1 Overall Summary and Broader Impacts 

This research elucidates the potential of diffusion probabilistic 

models as a transformative tool for financial stress testing. By 

adapting the diffusion paradigm from the vision domain to the 

stochastic domain of financial time series, we have developed a 

simulator capable of generating high-fidelity, conditional market 

scenarios. Our experiments confirm that the Diffusion-Based 

Market Simulator (DMS) surpasses traditional parametric methods 

and adversarial networks in capturing the stylized facts of asset 

returns, particularly regarding tail risks and temporal 

dependencies. 

The implication for the financial industry is significant. Risk 

managers currently rely on a limited set of historical crisis 

scenarios. The DMS enables the generation of an infinite number 

of synthetic crises, each structurally distinct yet statistically 

plausible. This allows for a more robust exploration of the "risk 

surface" of a portfolio. Furthermore, the ability to condition the 

generation on specific outcomes (e.g., inflation spikes, sector 

crashes) empowers institutions to perform targeted stress tests that 

are compliant with regulatory demands while being 

mathematically more rigorous than manual adjustments to 

historical data. 

5.2 Constraints of the Study and Future Research Paths 

Despite these promising results, several limitations persist. First, 

the computational cost of sampling from diffusion models is 

considerably higher than that of GANs or VAEs due to the iterative 

nature of the reverse process. While we employed 1000 steps, real-

time risk management systems may require accelerated sampling 

techniques, such as Denoising Diffusion Implicit Models 

(DDIMs), to reduce inference latency. 

Second, our current implementation focuses on a low-dimensional 

regime (index and volatility). Scaling this to high-dimensional 

portfolios involving hundreds of correlated assets introduces 

significant challenges in modeling the covariance matrix 

effectively without running into the curse of dimensionality. 
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Future research should focus on two primary avenues: enhancing 

the sampling speed through distillation techniques and extending 

the architecture to handle cross-asset correlations in high-

dimensional portfolios. Additionally, integrating text-based 

conditioning (e.g., generating market scenarios based on news 

headlines) using Large Language Model embeddings could further 

bridge the gap between qualitative narrative risks and quantitative 

market impacts. 
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