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Abstract : The stability of global financial systems relies
heavily on the ability of institutions to anticipate and
withstand extreme market deviations. Traditional stress
testing methodologies, primarily predicated on historical
simulation or parametric Monte Carlo methods, often fail to
capture the complex, non-linear dependencies and fat-tailed
distributions inherent in financial time series during black
swan events. This paper introduces a novel framework for
financial stress testing utilizing diffusion-based generative
models. We propose a conditional diffusion probabilistic
model adapted for temporal data, capable of generating
high-fidelity synthetic market trajectories that adhere to
user-defined  stress  conditions.  Unlike  Generative
Adversarial Networks (GANs), which suffer from mode
collapse and training instability, our diffusion-based
approach ensures diverse scenario generation by iteratively
denoising random Gaussian processes under guided
constraints. We evaluate our model against standard
baselines using S&P 500 and volatility index data. The
results demonstrate that the proposed architecture not only
reproduces the statistical properties of historical data with
higher accuracy but also generates plausible, severe stress
scenarios that exceed historical precedents in terms of
severity and structural coherence. This research bridges the
gap between state-of-the-art computer vision generative
techniques and quantitative risk management, offering a
robust tool for systemic risk assessment.
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INTRODUCTION
1.1 Background

The domain of quantitative finance has long grappled with the
challenge of risk assessment under uncertainty. Following the 2008
global financial crisis, regulatory frameworks such as Basel III in
Europe and the Dodd-Frank Act (CCAR) in the United States
mandated rigorous stress testing for banking institutions. The
primary objective of these tests is to evaluate the capital adequacy
of financial entities under hypothetical yet plausible adverse
scenarios. Central to this process is the estimation of metrics like
Value-at-Risk (VaR) and Expected Shortfall (ES), which quantify
potential losses at specific confidence mtervals [1].

Traditionally, risk managers have relied on three main pillars for
scenario generation: Historical Simulation, which bootstraps past
returns;  Parametric  methods, often utillizing  Generalized
Autoregressive Conditional Heteroskedasticity (GARCH)
processes; and Monte Carlo simulations based on stochastic
differential equations. While these methods have served as the
mdustry standard for decades, they possess mherent limitations.
Historical simulation is constrained by the finite set of observed
events, effectively assigning a probability of zero to any event that
has not occurred in the past [2]. Conversely, parametric models
frequently rely on assumptions of normality or log-normality,
which notoriously fail to account for the leptokurtic (fat-tailed)
nature of asset return distributions, thereby underestimating the
likelihood of extreme market crashes [3].

1.2 Problem Statement

The core deficiency in existing stress testing frameworks lies in
their mability to generate "novel' risks. Static historical replays
cannot anticipate structural market shifts, while standard stochastic
models often lack the capacity to model complex, multi-modal
dependencies across different asset classes during periods of high
volatility. In recent years, deep generative models have emerged as
a potential solution. Generative Adversarial Networks (GANs) and
Variational Autoencoders (VAEs) have been applied to financial
time series generation with varying degrees of success. However,
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these architectures present significant technical challenges. GANs
are notoriously difficult to train, frequently suffering from mode
collapse—where the generator produces a limited variety of
outputs—and failing to capture the temporal correlations essential
for realistic market simulation [4]. VAEs, while more stable, often
produce blury or over-smoothed outputs that fail to retain the
high-frequency volatility characteristics of financial markets [5].

Furthermore, for stress testing purposes, unconditional generation
is insufficient. A risk manager does not merely require a random
market path; they require a path conditional on specific adverse
triggers, such as a 20% drop in the equity market or a sudden spike
n interest rates. Integrating such rigid constramts mto the
generative process without distorting the underlying statistical
manifold of the data remains an open research problem [6].

1.3 Contributions

In this paper, we address these limitations by proposing a
Diffusion-Based Market Simulator (DMS) specifically designed
for stress testing. Diffusion probabilistic models, which have
recently surpassed GANs in image synthesis quality, operate by
gradually destroying data structure through forward noise injection
and learning to reverse this process to reconstruct data from pure
noise. We adapt this paradigm to sequential financial data.

Our primary contributions are as follows:

I. We develop a temporal U-Net architecture mntegrated with
attention mechanisms to capture long-range dependencies in

financial time series, moving beyond the limitations of standard
Convolutional Neural Networks (CNNs) in this domain.

2. We mtroduce a conditional guidance mechanism that allows for
the precise ijection of stress factors (e.g., drawdown magnitude,

volatility shocks) mto the reverse diffusion process, enabling the
generation of coherent "what-if" scenarios.

3. We provide a comprehensive comparative analysis
demonstrating that our diffusion-based approach vyields lower
distributional distances (Wasserstein metric) and higher fidelity n
reproducing stylized facts (volatility clustering, heavy tails)
compared to state-of-the-art GAN baselines [7].

Page 75



Chapter 2: Related Work
2.1 Classical Approaches

The evolution of market simulation techniques is deeply rooted in
econometrics. The simplest form, Historical Simulation, assumes
that the future will resemble the past. While mtuitive, this method
is fundamentally backward-looking and fails to account for
structural breaks in the market regime [8]. To address this,
parametric approaches were developed. The GARCH family of
models, itroduced by Engle and Bollerslev, became the
cornerstone of volatility modeling. These models capture volatility
clustermg—the phenomenon where large price changes are
followed by large price changes. However, standard GARCH
models often struggle with multi-variate dependencies and require
explicit specification of the error distribution, which may not align
with empirical reality [9].

Monte Carlo simulations offer more flexibility by allowing the use
of Stochastic Differential Equations (SDEs), such as the Geometric
Brownian Motion or the Heston model for stochastic volatility.
While powerful, calibrating these models to capture the jomt
distributions  of hundreds of assets  simultaneously s
computationally expensive and mathematically intractable without
simplifying assumptions that reduce the realism of the generated
scenarios [10].

2.2 Deep Learning Methods

The advent of deep learning brought neural networks to the
forefront of financial modeling. Early attempts utilized Recurrent
Neural Networks (RNNs) and Long Short-Term Memory (LSTM)
networks to predict future prices. However, predictive models
differ fundamentally from generative models; the former seeks the
most likely future value, while the latter seeks to approximate the
entire probability distribution of possible paths [11].

Generative Adversarial Networks (GANSs) represented a paradigm
shit. QuantGAN and TimeGAN are notable examples where
adversarial training was applied to temporal data. TimeGAN, in
particular, introduced a supervised loss component to preserve
temporal dynamics alongside the adversarial objective. Despite
these advancements, GANs m finance struggle with the
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convergence of the minimax game, often leading to oscillating loss
functions and unreliable scenario generation [12].

Variational Autoencoders (VAEs) offer a probabilistic alternative
by maximizing the Evidence Lower Bound (ELBO). However, the
assumption of a Gaussian prior in the latent space often forces the
model to ignore complex tail dependencies, resulting in synthetic
data that appears too "normal" and lacks the erratic behavior of real
markets during stress periods [13].

2.3 Diffusion Probabilistic Models

Diffusion models, introduced by Sohl-Dickstein et al and
popularized by Ho et al as Denoising Diffusion Probabilistic
Models (DDPMs), have revolutionized generative Al These
models define a forward diffusion process that adds Gaussian noise
to the data and a reverse process parameterized by a neural
network that learns to denoise. Song et al. further unified these
discrete steps into continuous-time Score-Based Generative
Models governed by Stochastic Differential Equations [14].

Recent applications of diffusion models i non-image domains
have shown promise. In audio synthesis, WaveGrad and DiffWave
utilize diffusion for high-fidelity waveform generation. In the
context of time series, recent works have begun to explore
diffusion for imputation and forecasting. However, the specific
application of conditional diffusion models for generating adverse
financial stress scenarios remamns an under-explored niche. Our
work builds upon the conditional generation capabilities explored
in classifier-firee guidance, adapting them to the stochastic nature
of financial markets [15].

Chapter 3: Methodology

3.1 Overview of the Framework

Our proposed framework, the Diffusion-Based Market Simulator
(DMS), treats financial market trajectories as samples from a high-
dimensional joint distribution. The core objective is to learn this
distribution from historical data and then sample from conditional
subsets of this distribution corresponding to stress scenarios.
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The framework consists of two coupled processes:

1. Forward Diffusion Process (Signal Corruption): We
systematically degrade the structure of real market data sequences
by mjecting Gaussian noise over a finite number of timesteps T,
until the data is indistinguishable from isotropic Gaussian noise.

2. Reverse Diffusion Process (Signal Reconstruction): We train
a neural network to approximate the score function (the gradient of
the log-density) of the data, allowing us to traverse backward from
noise to a valid market trajectory.

3.2 The Forward Process

Let x, represent a sequence of asset returns of length L across D
assets. The forward process is a Markov chain fixed to a variance
schedule f3,,dots, ;. For any timestep t, the transition probability
is defined as a Gaussian distribution. As t approaches T, the
distribution of x, approximates a standard normal distribution
N(O, D).

This process is devoid of learnable parameters. Its sole purpose is
to provide the training targets for the reverse process. By using the
reparameterization trick, we can sample x, at any arbitrary
timestep directly from x, without iterating through intermediate

steps, which significantly accelerates the training data preparation
[16].

3.3 The Reverse Process and Network Architecture

The reverse process is defined as a parameterized Markov chain
where the model learns to predict the noise added at each step, or
equivalently, the mean of the posterior distribution. We employ a
modified 1D U-Net architecture, adapted for time-series data.

Standard U-Nets, used in medical imagng, utilize 2D
convolutions. For financial time series, we replace these with
causal 1D dilated convolutions. This ensures that the generated
point at time T depends only on the history and not on future
values, preserving the temporal causality inherent in markets.
Furthermore, we integrate Multi-Head Self-Attention mechanisms
at the bottleneck of the U-Net. Fiancial markets exhibit long-
range dependencies (e.g., a volatility shock today may echo a
shock from weeks ago). Attention layers allow the model to attend
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to disparate parts of the sequence globally, capturing these non-
local correlations [17].

3.4 M athematical Formulation

The training objective is derived from the upper bound on the
negative log-likelihood of the data. In practice, this simplifies to a
weighted mean squared error between the actual noise mjected &
and the noise predicted by the neural network &,.

To rigorously formalize the continuous-time generalization which
allows for more flexible sampling, we utilize the Stochastic
Differential Equation (SDE) formulation. The reverse-time SDE,
which enables us to generate samples by solving it backwards in
time, requires the estimation of the score function V,logp,(x).

The governing formula for the reverse-time SDE is given by:
dx = [f(x,t) — g () Vnaenprxlogp, (x)]dt + g(t)doverlinew

Where f(x,t) is the drift coefficient of the forward SDE, g(t) is
the diffusion coefficient, and doverlinew is a standard Wiener
process flowing backward in time. The neural network is trained to
approximate the score term V.., rxlogp,(x) [18]. By
numerically mtegrating this equation from t=T to t=0, we
obtain a synthetic market trajectory.

3.5 Conditional Stress Generation

A crucial mnovation i our methodology is the conditioning
mechanism. To perform stress testing, we cannot simply sample
from the unconditional distribution p(x). We must sample from

p(x|c), where c represents the stress condition (e.g., "Market
Return <-15%").

We implement this via Classifier-Free Guidance. During training,
the network is jointly traned on both conditional and
unconditional objectives. We randomly drop the condition ¢ with a
certain probability (e.g., 0.1), replacing it with a null token. During
sampling, the predicted noise is a linear combination of the
unconditional noise prediction and the conditional noise prediction.

hateg(x,,¢) = (1 + w)eg(x,,¢) —weg(x,, emptyset)
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w is the guidance scale. A higher w forces the generated sample to
adhere more strictly to the stress condition ¢, potentially at the cost
of diversity. This allows risk managers to dial up the "stress"
ntensity seamlessly [19].

Raovorsa Denoising Procass

Farward Diffusion Process

Figure 1: Architecture of the Diffusion
Chapter 4: Experiments and Analysis
4.1 Experimental Setup

To wvalidate the efficacy of the DMS, we utilized a dataset
comprising daily closing prices of the S&P 500 index and the
CBOE Volatility Index (VIX) spanning from January 2000 to
December 2023. This period covers multiple major market stress
events, including the Dot-com bubble burst, the 2008 Financial
Crisis, and the COVID-19 market crash. The data was transformed
mto logarithmic returns and normalized to ensure stable training
dynamics.

We compared our Diffusion-Based Market Simulator (DMS)

against three distinct baselines to represent the spectrum of
available methodologies:

1. Historical Simulation (HS): Bootstrapping 10-day trajectories
from the test set.

2.  GARCH(,1): A standard parametric model fitted to the
training data residuals.
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3. TimeGAN: A state-of-the-art adversarial model specifically
designed for time-series generation.

All neural network models were trained on NVIDIA A100 GPUs
using the PyTorch framework. The diffusion model utilized 1000
diffusion steps with a cosine noise schedule, which has been
shown to improve sample quality in image domains and applies
effectively here to signal data [20].

4.2 Evaluation Metrics

Evaluating generative models for financial time series is non-

trivia, as there is no single "ground truth" to compare against
pixel-wise. We relied on a suite of statistical metrics:

1.  Wasserstein Distance: We computed the 1-Wasserstein
distance between the distributions of the synthetic and real returns.
This measures how much work is needed to transform the synthetic
distribution nto the real one; lower is better.

2. Autocorrelation Function (ACF) Score: We calculated the
Euclidean distance between the ACF of real and synthetic data to
evaluate how well the model captures temporal dependencies.

3. Tail Fidelity (ES Error): We compared the Expected Shortfall
(at 95% and 99% confidence levels) of the generated data versus
the hold-out test set. This is critical for stress testing, as it measures
the accuracy of the worst-case loss estimates.

4. Discriminative Score: We tramed a post-hoc time-series
classifier to distinguish between real and fake data. An accuracy
close to 50% indicates that the generator is fooling the
discriminator effectively.

4.3 Results and Discussion

The quantitative results are summarized in Table 1. The Historical
Simulation provides a baseline but fails to generate any novel
scenarios, resultng in a high discriminative score (it is easily
identified as "memorized" data if checked against training samples,
though here we treat it as a distribution reference).

Metric Historical =~ GARCH(1,1) TmeGAN DMS (Ours)
Simulation
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Wasserstein ~~ 0.00 (Ref) 1.45 0.92 0.34

Dist. (107 4-

2})

ACF Score0.02 0.18 0.11 0.05
(Lag-50)

ES 99% Error N/A +12.5% -8.4% +2.1%
Discriminative 0.50 0.88 0.72 0.56
Score

Analysis of Distributional Fidelity:

The DMS significantly outperforms GARCH and TimeGAN i
terms of Wasserstein distance. GARCH models tend to
oversimplify the return distribution, often missing the complex
multi-modality of the data. TimeGAN improves upon this but still
exhibits signs of mode collapse, where the generated variety is
lower than the actual market. The diffusion model, by contrast,
covers the support of the distribution more comprehensively. The
terative refinement nature of diffusion allows it to fill in fine-
grained details of the distribution that single-shot GAN generators
often miss [21].

Temporal Dynamics and Tail Risk:

The ACF score indicates that our model captures the volatility
clustering and mean-reversion properties of the S&P 500 better
than the deep learning baselines. Crucially, in terms of Expected
Shortfall (ES) error, GARCH overestimated the risk (too
conservative), while TimeGAN underestimated it (dangerous for
risk management). The DMS showed a slight overestimation
(+2.1%), which is generally preferred in risk management
(conservatism) over underestimation. This suggests that the
diffusion model successfully learned the heavy-tailed nature of the
returns without explicit programming.

Stress Scenario Coherence:

When conditioned on a '"Stress" vector (e.g, enforcing a
cumulative 10-day return of -15%), the DMS produced trajectories
that not only met the endpomt constrant but exhibited realistic
path dynamics. Unlike simple linear interpolation or bridging used
in Brownian bridges, the diffusion-generated paths displayed
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realistic volatility spikes ("panic") accompanying the drawdown.
This qualitative superiority confirms the model's utility for stress

testing: it generates the "path to ruin" realistically, not just the ruin
itself [22].
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Chapter 5: Conclusion
5.1 Overall Summary and Broader Impacts

This research elucidates the potential of diffusion probabilistic
models as a transformative tool for financial stress testing. By
adapting the diffusion paradigm from the vision domain to the
stochastic domain of financial time series, we have developed a
simulator capable of generating high-fidelity, conditional market
scenarios. Our experiments confirm that the Diffusion-Based
Market Simulator (DMS) surpasses traditional parametric methods
and adversarial networks in capturing the stylized facts of asset
returns,  particularly  regarding tail risks and  temporal
dependencies.

The implication for the financial mdustry is significant. Risk
managers currently rely on a limited set of historical crisis
scenarios. The DMS enables the generation of an infinite number
of synthetic crises, each structurally distinct yet statistically
plausible. This allows for a more robust exploration of the "risk
surface" of a portfolio. Furthermore, the ability to condition the
generation on specific outcomes (e.g., inflation spikes, sector
crashes) empowers institutions to perform targeted stress tests that
are  complant  with regulatory demands while being
mathematically more rigorous than manual adjustments to
historical data.

5.2 Constraints of the Study and Future Research Paths

Despite these promising results, several limitations persist. First,
the computational cost of sampling from diffusion models is
considerably higher than that of GANs or VAEs due to the iterative
nature of the reverse process. While we employed 1000 steps, real-
time risk management systems may require accelerated sampling
techniques, such as Denoising Diffusion Implicit Models
(DDIMs), to reduce inference latency.

Second, our current implementation focuses on a low-dimensional
regimne (index and volatility). Scaling this to high-dimensional
portfolios involving hundreds of correlated assets introduces

significant ~ challenges i  modeling the covariance matrix
effectively without running into the curse of dimensionality.
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Future research should focus on two primary avenues: enhancing
the sampling speed through distillation techniques and extending
the architecture to handle cross-asset correlations i high-
dimensional ~ portfolios.  Additionally,  integrating  text-based
conditioning (e.g., generating market scenarios based on news
headlines) using Large Language Model embeddings could further
bridge the gap between qualitative narrative risks and quantitative
market impacts.
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