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Abstract : Structural Health Monitoring (SHM) has become a
critical component in the lifecycle management of civil
infrastructure, particularly for high-rise buildings subjected to
aging and environmental stressors. Traditional damage
identification methods largely rely on supervised learning
paradigms that require extensive labeled datasets of damaged
states. However, in real-world scenarios, data representing
structural failure is sparse, expensive to acquire, and often
unavailable until a catastrophic event occurs. This creates a
significant bottleneck in deploying data-driven diagnostic systems.
To address this label scarcity, this paper proposes a novel
framework for Multisensor Damage Localization using Self-
Supervised Learning (SSL). We introduce a spatiotemporal graph
contrastive learning architecture that exploits the inherent
topology of sensor networks and the temporal consistency of
vibration responses. By treating the sensor network as a graph and
the time-series vibration data as node attributes, our model learns
robust, damage-sensitive representations from normal operational
data alone. We employ a specialized augmentation strategy
tailored for vibration signals, including phase shifting and
stochastic sensor masking, to train the network to distinguish
between environmental variability and structural anomalies.
Experimental validation is conducted on a high-fidelity finite
element model of a ten-story building under various excitation
profiles. Results demonstrate that the proposed method
significantly  outperforms  traditional  autoencoder-based
approaches and achieves localization accuracy comparable to
fully supervised baselines, utilizing only 5% of the labeled data for
fine-tuning.
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INTRODUCTION
1.1 Background

The structural integrity of civil infrastructure, including
skyscrapers, bridges, and dams, is paramount to public safety and
economic stability. As the global infrastructure stock ages, the risk
of structural failure due to material fatigue, seismic activity, and
environmental corrosion increases substantially. Consequently,
Structural Health Monitoring (SHM) has emerged as an essential
discipline, aiming to detect, localize, and quantify damage at the
earliest possible stage [1]. Modern SHM systems largely depend
on dense arrays of sensors, particularly accelerometers, which
capture the dynamic response of a structure to ambient excitations
such as wind, traffic, or micro-tremors. These vibration signals
contain rich information regarding the physical properties of the
structure, including stiffness, mass, and damping ratios.

Historically, the analysis of these signals was rooted in physics-
based methodologies. Engineers would compare measured modal
parameters—such as natural frequencies and mode shapes—
against a calibrated Finite Element Model (FEM) to identify
discrepancies indicative of damage. While effective in controlled
environments, these model-based approaches often struggle in real-
world applications due to modeling errors and the computational
prohibitiveness of updating complex FEMs in real-time [2]. This
limitation has catalyzed a paradigm shift toward data-driven
approaches, where machine learning algorithms infer structural
health directly from sensor data without explicit physical
modeling.

1.2 Problem Statement

Despite the promise of data-driven SHM, a fundamental challenge
remains: the scarcity of labeled damage data. In the context of civil
engineering, a '"labeled" sample corresponds to sensor data
recorded from a structure known to be damaged, with the location
and severity of the damage precisely annotated. Obtaining such
data from operational buildings is practically impossible, as
structures are rarely allowed to operate in a damaged state for
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extended periods, and deliberately inducing damage for data
collection is economically and ethically unfeasible [3].

Consequently, researchers often resort to supervised deep learning
models trained on synthetic data generated from simulations.
However, the domain gap between idealized simulations and noisy,
complex real-world data frequently leads to poor generalization
performance. Furthermore, widely used unsupervised methods,
such as Principal Component Analysis (PCA) or standard
Autoencoders (AE), often fail to capture the complex
spatiotemporal dependencies inherent in multisensor networks.
They tend to treat sensors as independent channels or simple
vectors, ignoring the spatial topology of the building that governs
how vibration energy propagates from one structural element to
another [4]. The core problem, therefore, is how to leverage the
abundance of unlabeled data collected from healthy structures to
learn a representation that is sensitive to local stiffness changes
(damage) while remaining robust to global environmental changes
(temperature, wind load).

1.3 Contributions

To overcome these limitations, this research presents a self-
supervised learning framework specifically designed for
multisensor damage localization. Our approach posits that the
vibration response of a building is governed by a latent
spatiotemporal graph structure, where nodes represent sensors and
edges represent physical connectivity (beams and columns).

The specific contributions of this paper are as follows:

1. We propose a Graph Contrastive Learning (GCL) framework
that learns determining features from vibration data without
requiring damage labels. This is achieved by maximizing the
mutual information between different augmented views of the
same structural state [5].

2. We introduce a set of domain-specific data augmentations for
vibration signals, including "Sub-graph Masking" and "Temporal
Jittering," which prevent the model from overfitting to trivial
signal characteristics and force it to learn global structural
dynamics.
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3. We develop a gradient-based localization technique that maps
the activation discrepancies in the self-supervised network back to
specific sensor nodes, allowing for precise localization of
structural defects.

4. We provide a comprehensive evaluation on a complex building
benchmark, demonstrating that our method yields superior
localization performance compared to traditional anomaly
detection methods and remains robust under varying noise
conditions [6].

Chapter 2: Related Work
2.1 Classical and Statistical Approaches

The foundation of vibration-based damage detection lies in linear
structural dynamics. Early research focused heavily on the tracking
of modal parameters. It is well established that a reduction in
stiffness, caused by cracking or material degradation, leads to a
decrease in natural frequencies and a modification of mode shapes
[7]. Methods such as the Coordinate Modal Assurance Criterion
(COMAC) were developed to spatially correlate measured mode
shapes with reference baselines to pinpoint damage locations.
However, these global modal parameters are often insensitive to
local, incipient damage. A small crack in a massive beam might
only cause a frequency shift of less than 0.1%, which is easily
masked by measurement noise or thermal expansion [8].

To address noise sensitivity, statistical process control methods
were adopted. Techniques utilizing Mahalanobis squared distance
and Singular Value Decomposition (SVD) allowed for outlier
detection in multivariate time-series data. While these methods
improved detection rates, they generally lack the capacity for
precise localization. They can flag that the structure has changed,
but rarely can they identify exactly which element is compromised
without extensive manual calibration [9].

2.2 Deep Learning and Anomaly Detection

The advent of Deep Learning (DL) brought Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) to the
forefront of SHM. Supervised CNNs, treating vibration
spectrograms as images, have achieved remarkable accuracy in
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classifying damage types when trained on large, balanced datasets
[10]. However, the reliance on balanced data is their Achilles' heel.

Unsupervised DL approaches have thus gained traction.
Autoencoders (AE) and Variational Autoencoders (VAE) are
commonly used to learn a probabilistic distribution of the healthy
state. During inference, data with high reconstruction error is
flagged as anomalous. While AEs improve upon linear PCA,
standard architectures often process sensor channels independently
or simply concatenated, neglecting the spatial interactions between
sensors. Recent works have begun integrating Graph Neural
Networks (GNNs) to model these spatial dependencies [11]. GNNs
can explicitly model the flow of information between sensor nodes,
aligning the neural architecture with the physical topology of the
building.

2.3 Self-Supervised Learning

Self-Supervised Learning (SSL) has revolutionized computer
vision and natural language processing by enabling models to learn
rich representations from unlabeled data through "pretext tasks."
Contrastive learning, a sub-domain of SSL exemplified by
frameworks like SimCLR and MoCo, learns by pulling
representations of similar samples (positive pairs) together while
pushing dissimilar samples (negative pairs) apart [12].

In the context of time-series analysis, SSL is an emerging field.
Applications in EEG analysis and fault diagnosis of rotating
machinery (e.g., bearings) have shown promise. However, the
application of spatiotemporal contrastive learning to distributed
sensor networks in civil infrastructure remains underexplored.
Existing methods often struggle to define appropriate positive and
negative pairs in the context of continuous vibration monitoring,
where temporal proximity does not always imply structural
similarity due to varying load conditions [13]. This paper addresses
this gap by defining topological and temporal augmentations suited
for building dynamics.

Chapter 3: Methodology

The proposed methodology leverages the spatial configuration of
the sensor network and the temporal nature of vibration data to
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learn a representation space where damaged states are distinctly
separable from healthy states, without explicit supervision.

3.1 Graph Representation of Sensor Networks

We represent the sensor network as an undirected graph G =
(V,E), where V = vy,...,vy is the set of N sensor nodes, and E
represents the edges. In a building, edges are defined based on
physical connectivity; for instance, if two accelerometers are
placed on adjacent floors connected by a column, an edge exists
between them.

The input data consists of multivariate time-series signals X €
mathbbRN>T | where T is the length of the time window. Each
node v; possesses a feature vector x; € mathbbR” corresponding
to the acceleration history at that location. To process this data, we
utilize a Spatiotemporal Graph Neural Network (ST-GNN). The
ST-GNN comprises two main components: a graph convolution
module to aggregate spatial information from neighbors, and a
temporal convolution module to capture dynamic trends over time.

3.2 Spatiotemporal Encoder

The core of our framework is the encoder network, fy. The spatial
aggregation is performed using Graph Convolutional Layers
(GCN). For a given layer [, the feature propagation is defined as:

1 1
HUD = g(tildeD ztildeAtildeD 2HOW ®)

Here, tildeA = A+ 1 is the adjacency matrix with self-loops,
tildeD is the degree matrix, W® is the trainable weight matrix,
and o is a non-linear activation function (ReLU). H©® is the input
feature matrix derived from the temporal processing of raw signals.

To handle the temporal dimension, we employ 1D dilated
convolutions prior to the graph aggregation. This allows the
network to learn frequency-domain characteristics (like resonance)
implicitly from the time-domain signal. The output of the encoder
is a latent representation Z = fy(X), which compacts the high-
dimensional vibration data into a dense vector summarizing the
structural state [14].
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Figure 1: System Architecture
3.3 Vibration-Specific Augmentations

The success of contrastive learning hinges on the quality of data
augmentations. Standard image augmentations (cropping, color
jitter) are inapplicable to vibration data. We introduce two physics-
informed augmentations:

1. Stochastic Sensor Masking (Spatial Augmentation): We
randomly zero out the input signals of a subset of sensors (e.g.,
10%). This forces the GNN to reconstruct the global structural
state from partial observations, leveraging the correlation between
neighboring sensors. If the network can infer the motion of node i
from its neighbors, it has learned the transmissibility functions of
the structure.

2. Phase Shifting and Jittering (Temporal Augmentation): We
introduce small random phase shifts and additive Gaussian noise to
the time signals. This simulates measurement noise and slight
asynchronous sampling, ensuring the learned representations are
robust to hardware imperfections [15].

3.4 Contrastive Learning Framework

We employ a Normalized Temperature-scaled Cross Entropy (NT-
Xent) loss, commonly referred to as InfoNCE. For a minibatch of
M graph samples, we generate two augmented views for each
sample, resulting in 2M data points. For a given sample k, let z;
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and z; be the representations of its two augmented views (the

positive pair). The loss function aims to maximize the similarity
between z; and z; while minimizing the similarity with all other

2(M — 1) negative samples in the batch.

The mathematical formulation of the loss for a positive pair
(i,j) is defined as:

exp(sim(z;, z;)/T)

Yr=1-""mathbbly .exp(sim(z;, z;)/T)

Li,j = —lOg

where sim(u,v) = uTv/(Ju||v|) denotes the cosine similarity,
mathbbl is the indicator function, and t is the temperature
parameter controlling the sharpness of the distribution. By
minimizing this loss, the encoder fy learns to map structurally
similar states to nearby points in the latent space, regardless of the
noise or missing sensor data introduced by augmentation [16].

3.5 Damage Localization via Activation Mapping

Once the encoder is trained on healthy data, it effectively learns the
manifold of normal structural behavior. To localize damage, we
analyze the node-wise feature activations. When a damaged sample
is passed through the network, the graph convolutions at the
location of damage will generate activation patterns that deviate
significantly from the learned healthy distribution.

We utilize a Gradient-weighted Class Activation Mapping (Grad-
CAM) approach adapted for graphs. We compute the gradients of
the reconstruction error (or a self-supervised discrepancy score)
with respect to the node features in the final graph convolutional
layer. These gradients serve as weights, highlighting which nodes
(sensors) contributed most to the deviation from normality. These
weights are then normalized to generate a heat map over the
building topology, identifying the likely epicenter of structural
damage.

Chapter 4: Experiments and Analysis
4.1 Experimental Setup

To validate the proposed method, we utilized a high-fidelity Finite
Element Model of the ASCE Benchmark Structure, a simulated 4-
story, 2-bay by 2-bay steel frame. While we also conducted tests on
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a 10-story shear building model, the ASCE benchmark provides a
standard for comparison. The structure was excited using white
Gaussian noise to simulate ambient wind loading.

Dataset Generation:

We simulated 5,000 distinct time-series instances for the healthy
state to train the SSL model. For testing, we generated 1,000
instances across 5 different damage scenarios. Damage was
induced by reducing the stiffness of specific braces or beams by
10% to 40%. This simulates subtle to moderate structural
degradation.

Table 1 summarizes the dataset parameters utilized in this study.

Parameter Value / Description
Sampling Frequency 100 Hz

Duration per Sample 4 seconds (400 time steps)
Number of Sensors 16 (4 per floor)

Training Samples (Healthy) 5,000 (Unlabeled)

Test Samples (Damaged) 1,000 (Labeled for validation
only)
Noise Level 10% RMS Gaussian Noise added

4.2 Baselines and Metrics

We compared our Graph Contrastive Learning (GCL)
approach against three baselines:

1. PCA-T2: Principal Component Analysis using Hotelling’s T-
squared statistic.

2.  Autoencoder (AE): A standard deep fully connected
autoencoder minimizing reconstruction error.

3. Supervised CNN: A convolutional network trained with 100%
labeled damage data (serving as an upper bound for performance).

The primary metric for detection is the F1-Score. For localization,
we use the Localization Error (LE), defined as the topological
distance (number of hops) between the predicted damage node and
the actual damaged element.
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4.3 Results and Discussion
Anomaly Detection Performance:

The self-supervised model demonstrated exceptional capability in
distinguishing healthy from damaged states. By learning the
geometric dependencies between sensors, the model identified
stiffness reductions that caused only minor frequency shifts, which
PCA largely missed.

Figure 2: t-SNE Visualization
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Damage on Floor 1

Healthy Training Data
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A scatter plot showing the 2D projection of high-dimensional latent vectors. Blue points represent repreathy”
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discrinative features.

Figure 2: t-SNE Visualization of Embedings
Localization Accuracy:

Table 2 presents the localization performance. Our method
outperforms the standard Autoencoder significantly. The
Autoencoder often spreads the reconstruction error across all
sensors due to the global nature of its bottleneck. In contrast, the
GNN-based approach preserves local topology, allowing the Grad-
CAM mechanism to isolate the specific node nearest to the

damage.
Method Detection  F1-Localization Label
Score Error (Hops)  Requirement
PCA-T2 0.72 N/A (GlobalNone
only)
Standard 0.81 1.45 None
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Autoencoder

Supervised 0.96 0.12 100% (Full
CNN Labels)
Proposed GCLO0.93 0.34 0% (Self-
(Ours) Supervised)

As shown in Table 2, our method achieves an F1-score of 0.93,
approaching the supervised upper bound of 0.96, yet it requires
zero damage labels during training. The localization error of 0.34
hops indicates that, on average, the model pinpointed the exact
damaged sensor or its immediate neighbor.

Robustness to Noise:

We further analyzed performance under varying noise levels. As
the Signal-to-Noise Ratio (SNR) decreased, the performance of the
analytical PCA method degraded rapidly. The contrastive learning
model, however, remained robust. The "Jittering" augmentation
during training effectively acted as a regularizer, teaching the
model to ignore high-frequency noise components that do not
correlate with the underlying structural graph.

Damage Activaton Score

Figure 3: Localization Heathmap

Figure 3: Localization Heatmap
Chapter 5: Conclusion

5.1 Findings Overview and Implications
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This research has presented a robust framework for multisensor
damage localization in buildings using self-supervised vibration
representation learning. By integrating Graph Neural Networks
with a contrastive learning objective, we addressed the critical
challenge of label scarcity in Structural Health Monitoring. Our
methodology effectively transforms raw vibration data into a rich
latent space where structural anomalies are geometrically distinct
from normal operational variations.

The implications of this work are significant for the maintenance
of civil infrastructure. The ability to train high-performance
diagnostic models using only ambient vibration data collected from
healthy structures removes the need for expensive and unrealistic
damaged-state data. This paves the way for "digital twin" systems
that can be deployed on newly constructed buildings, learning their
baseline behavior continuously and flagging local anomalies the
moment they arise. The use of topological constraints ensures that
the model is not just learning statistical outliers, but physical
discrepancies in the structural system.

5.2 Limitations and Future Investigation

While the proposed approach shows great promise, several
limitations must be addressed in future work. First, the
computational cost of training Graph Neural Networks on high-
frequency time-series data is non-trivial. For very large structures
with thousands of sensors (e.g., long-span suspension bridges), the
graph complexity may require more efficient sampling strategies or
hierarchical graph pooling to remain computationally feasible.

Second, the current study assumed a linear behavior of the
structure in its healthy state. High-rise buildings often exhibit non-
linear behavior due to opening/closing of cracks or damping
variation under extreme loads (e.g., typhoons). Future research
should investigate the integration of non-linear physical priors into
the loss function to distinguish between benign non-linearities and
actual damage. Additionally, extending the framework to handle
variable environmental conditions, such as drastic temperature
shifts that affect stiffness, via disentangled representation learning,
would further enhance the robustness of the system for real-world
deployment.
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