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Abstract : Structural Health Monitoring (SHM) has become a 

critical component in the lifecycle management of civil 

infrastructure, particularly for high-rise buildings subjected to 

aging and environmental stressors. Traditional damage 

identification methods largely rely on supervised learning 

paradigms that require extensive labeled datasets of damaged 

states. However, in real-world scenarios, data representing 

structural failure is sparse, expensive to acquire, and often 

unavailable until a catastrophic event occurs. This creates a 

significant bottleneck in deploying data-driven diagnostic systems. 

To address this label scarcity, this paper proposes a novel 

framework for Multisensor Damage Localization using Self-

Supervised Learning (SSL). We introduce a spatiotemporal graph 

contrastive learning architecture that exploits the inherent 

topology of sensor networks and the temporal consistency of 

vibration responses. By treating the sensor network as a graph and 

the time-series vibration data as node attributes, our model learns 

robust, damage-sensitive representations from normal operational 

data alone. We employ a specialized augmentation strategy 

tailored for vibration signals, including phase shifting and 

stochastic sensor masking, to train the network to distinguish 

between environmental variability and structural anomalies. 

Experimental validation is conducted on a high-fidelity finite 

element model of a ten-story building under various excitation 

profiles. Results demonstrate that the proposed method 

significantly outperforms traditional autoencoder-based 

approaches and achieves localization accuracy comparable to 

fully supervised baselines, utilizing only 5% of the labeled data for 

fine-tuning. 
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INTRODUCTION 

1.1 Background 

The structural integrity of civil infrastructure, including 

skyscrapers, bridges, and dams, is paramount to public safety and 

economic stability. As the global infrastructure stock ages, the risk 

of structural failure due to material fatigue, seismic activity, and 

environmental corrosion increases substantially. Consequently, 

Structural Health Monitoring (SHM) has emerged as an essential 

discipline, aiming to detect, localize, and quantify damage at the 

earliest possible stage [1]. Modern SHM systems largely depend 

on dense arrays of sensors, particularly accelerometers, which 

capture the dynamic response of a structure to ambient excitations 

such as wind, traffic, or micro-tremors. These vibration signals 

contain rich information regarding the physical properties of the 

structure, including stiffness, mass, and damping ratios. 

Historically, the analysis of these signals was rooted in physics-

based methodologies. Engineers would compare measured modal 

parameters—such as natural frequencies and mode shapes—

against a calibrated Finite Element Model (FEM) to identify 

discrepancies indicative of damage. While effective in controlled 

environments, these model-based approaches often struggle in real-

world applications due to modeling errors and the computational 

prohibitiveness of updating complex FEMs in real-time [2]. This 

limitation has catalyzed a paradigm shift toward data-driven 

approaches, where machine learning algorithms infer structural 

health directly from sensor data without explicit physical 

modeling. 

1.2 Problem Statement 

Despite the promise of data-driven SHM, a fundamental challenge 

remains: the scarcity of labeled damage data. In the context of civil 

engineering, a "labeled" sample corresponds to sensor data 

recorded from a structure known to be damaged, with the location 

and severity of the damage precisely annotated. Obtaining such 

data from operational buildings is practically impossible, as 

structures are rarely allowed to operate in a damaged state for 



Page 89  
 

extended periods, and deliberately inducing damage for data 

collection is economically and ethically unfeasible [3]. 

Consequently, researchers often resort to supervised deep learning 

models trained on synthetic data generated from simulations. 

However, the domain gap between idealized simulations and noisy, 

complex real-world data frequently leads to poor generalization 

performance. Furthermore, widely used unsupervised methods, 

such as Principal Component Analysis (PCA) or standard 

Autoencoders (AE), often fail to capture the complex 

spatiotemporal dependencies inherent in multisensor networks. 

They tend to treat sensors as independent channels or simple 

vectors, ignoring the spatial topology of the building that governs 

how vibration energy propagates from one structural element to 

another [4]. The core problem, therefore, is how to leverage the 

abundance of unlabeled data collected from healthy structures to 

learn a representation that is sensitive to local stiffness changes 

(damage) while remaining robust to global environmental changes 

(temperature, wind load). 

1.3 Contributions 

To overcome these limitations, this research presents a self-

supervised learning framework specifically designed for 

multisensor damage localization. Our approach posits that the 

vibration response of a building is governed by a latent 

spatiotemporal graph structure, where nodes represent sensors and 

edges represent physical connectivity (beams and columns). 

The specific contributions of this paper are as follows: 

1.  We propose a Graph Contrastive Learning (GCL) framework 

that learns determining features from vibration data without 

requiring damage labels. This is achieved by maximizing the 

mutual information between different augmented views of the 

same structural state [5]. 

2.  We introduce a set of domain-specific data augmentations for 

vibration signals, including "Sub-graph Masking" and "Temporal 

Jittering," which prevent the model from overfitting to trivial 

signal characteristics and force it to learn global structural 

dynamics. 
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3.  We develop a gradient-based localization technique that maps 

the activation discrepancies in the self-supervised network back to 

specific sensor nodes, allowing for precise localization of 

structural defects. 

4.  We provide a comprehensive evaluation on a complex building 

benchmark, demonstrating that our method yields superior 

localization performance compared to traditional anomaly 

detection methods and remains robust under varying noise 

conditions [6]. 

Chapter 2: Related Work 

2.1 Classical and Statistical Approaches 

The foundation of vibration-based damage detection lies in linear 

structural dynamics. Early research focused heavily on the tracking 

of modal parameters. It is well established that a reduction in 

stiffness, caused by cracking or material degradation, leads to a 

decrease in natural frequencies and a modification of mode shapes 

[7]. Methods such as the Coordinate Modal Assurance Criterion 

(COMAC) were developed to spatially correlate measured mode 

shapes with reference baselines to pinpoint damage locations. 

However, these global modal parameters are often insensitive to 

local, incipient damage. A small crack in a massive beam might 

only cause a frequency shift of less than 0.1%, which is easily 

masked by measurement noise or thermal expansion [8]. 

To address noise sensitivity, statistical process control methods 

were adopted. Techniques utilizing Mahalanobis squared distance 

and Singular Value Decomposition (SVD) allowed for outlier 

detection in multivariate time-series data. While these methods 

improved detection rates, they generally lack the capacity for 

precise localization. They can flag that the structure has changed, 

but rarely can they identify exactly which element is compromised 

without extensive manual calibration [9]. 

2.2 Deep Learning and Anomaly Detection 

The advent of Deep Learning (DL) brought Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs) to the 

forefront of SHM. Supervised CNNs, treating vibration 

spectrograms as images, have achieved remarkable accuracy in 
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classifying damage types when trained on large, balanced datasets 

[10]. However, the reliance on balanced data is their Achilles' heel. 

Unsupervised DL approaches have thus gained traction. 

Autoencoders (AE) and Variational Autoencoders (VAE) are 

commonly used to learn a probabilistic distribution of the healthy 

state. During inference, data with high reconstruction error is 

flagged as anomalous. While AEs improve upon linear PCA, 

standard architectures often process sensor channels independently 

or simply concatenated, neglecting the spatial interactions between 

sensors. Recent works have begun integrating Graph Neural 

Networks (GNNs) to model these spatial dependencies [11]. GNNs 

can explicitly model the flow of information between sensor nodes, 

aligning the neural architecture with the physical topology of the 

building. 

2.3 Self-Supervised Learning 

Self-Supervised Learning (SSL) has revolutionized computer 

vision and natural language processing by enabling models to learn 

rich representations from unlabeled data through "pretext tasks." 

Contrastive learning, a sub-domain of SSL exemplified by 

frameworks like SimCLR and MoCo, learns by pulling 

representations of similar samples (positive pairs) together while 

pushing dissimilar samples (negative pairs) apart [12]. 

In the context of time-series analysis, SSL is an emerging field. 

Applications in EEG analysis and fault diagnosis of rotating 

machinery (e.g., bearings) have shown promise. However, the 

application of spatiotemporal contrastive learning to distributed 

sensor networks in civil infrastructure remains underexplored. 

Existing methods often struggle to define appropriate positive and 

negative pairs in the context of continuous vibration monitoring, 

where temporal proximity does not always imply structural 

similarity due to varying load conditions [13]. This paper addresses 

this gap by defining topological and temporal augmentations suited 

for building dynamics. 

Chapter 3: Methodology 

The proposed methodology leverages the spatial configuration of 

the sensor network and the temporal nature of vibration data to 
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learn a representation space where damaged states are distinctly 

separable from healthy states, without explicit supervision. 

3.1 Graph Representation of Sensor Networks 

We represent the sensor network as an undirected graph 𝐺 =

(𝑉, 𝐸), where 𝑉 = 𝑣1, . . . , 𝑣𝑁 is the set of 𝑁 sensor nodes, and 𝐸 

represents the edges. In a building, edges are defined based on 

physical connectivity; for instance, if two accelerometers are 

placed on adjacent floors connected by a column, an edge exists 

between them. 

The input data consists of multivariate time-series signals 𝑋 ∈

𝑚𝑎𝑡ℎ𝑏𝑏𝑅𝑁×𝑇, where 𝑇 is the length of the time window. Each 

node 𝑣𝑖 possesses a feature vector 𝑥𝑖 ∈ 𝑚𝑎𝑡ℎ𝑏𝑏𝑅𝑇 corresponding 

to the acceleration history at that location. To process this data, we 

utilize a Spatiotemporal Graph Neural Network (ST-GNN). The 

ST-GNN comprises two main components: a graph convolution 

module to aggregate spatial information from neighbors, and a 

temporal convolution module to capture dynamic trends over time. 

3.2 Spatiotemporal Encoder 

The core of our framework is the encoder network, 𝑓𝜃. The spatial 

aggregation is performed using Graph Convolutional Layers 

(GCN). For a given layer 𝑙, the feature propagation is defined as: 

𝐻(𝑙+1) = 𝜎(𝑡𝑖𝑙𝑑𝑒𝐷−
1
2𝑡𝑖𝑙𝑑𝑒𝐴𝑡𝑖𝑙𝑑𝑒𝐷−

1
2𝐻(𝑙)𝑊(𝑙)) 

Here, 𝑡𝑖𝑙𝑑𝑒𝐴 = 𝐴 + 𝐼 is the adjacency matrix with self-loops, 

𝑡𝑖𝑙𝑑𝑒𝐷 is the degree matrix, 𝑊(𝑙) is the trainable weight matrix, 

and 𝜎 is a non-linear activation function (ReLU). 𝐻(0) is the input 

feature matrix derived from the temporal processing of raw signals. 

To handle the temporal dimension, we employ 1D dilated 

convolutions prior to the graph aggregation. This allows the 

network to learn frequency-domain characteristics (like resonance) 

implicitly from the time-domain signal. The output of the encoder 

is a latent representation 𝑍 = 𝑓𝜃(𝑋), which compacts the high-

dimensional vibration data into a dense vector summarizing the 

structural state [14]. 
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Figure 1: System Architecture 

3.3 Vibration-Specific Augmentations 

The success of contrastive learning hinges on the quality of data 

augmentations. Standard image augmentations (cropping, color 

jitter) are inapplicable to vibration data. We introduce two physics-

informed augmentations: 

1.  Stochastic Sensor Masking (Spatial Augmentation): We 

randomly zero out the input signals of a subset of sensors (e.g., 

10%). This forces the GNN to reconstruct the global structural 

state from partial observations, leveraging the correlation between 

neighboring sensors. If the network can infer the motion of node 𝑖 

from its neighbors, it has learned the transmissibility functions of 

the structure. 

2.  Phase Shifting and Jittering (Temporal Augmentation): We 

introduce small random phase shifts and additive Gaussian noise to 

the time signals. This simulates measurement noise and slight 

asynchronous sampling, ensuring the learned representations are 

robust to hardware imperfections [15]. 

3.4 Contrastive Learning Framework 

We employ a Normalized Temperature-scaled Cross Entropy (NT-

Xent) loss, commonly referred to as InfoNCE. For a minibatch of 

𝑀 graph samples, we generate two augmented views for each 

sample, resulting in 2𝑀 data points. For a given sample 𝑘, let 𝑧𝑖 
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and 𝑧𝑗 be the representations of its two augmented views (the 

positive pair). The loss function aims to maximize the similarity 

between 𝑧𝑖 and 𝑧𝑗 while minimizing the similarity with all other 

2(𝑀 − 1) negative samples in the batch. 

The mathematical formulation of the loss for a positive pair 

(𝒊, 𝒋) is defined as: 

𝐿𝑖,𝑗 = −𝑙𝑜𝑔
𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧𝑖, 𝑧𝑗)/𝜏)

∑𝑘=1
2𝑀𝑚𝑎𝑡ℎ𝑏𝑏1[𝑘≠𝑖]𝑒𝑥𝑝(𝑠𝑖𝑚(𝑧𝑖, 𝑧𝑘)/𝜏)

 

where 𝑠𝑖𝑚(𝑢, 𝑣) = 𝑢𝑇𝑣/(|𝑢||𝑣|) denotes the cosine similarity, 

𝑚𝑎𝑡ℎ𝑏𝑏1 is the indicator function, and 𝜏 is the temperature 

parameter controlling the sharpness of the distribution. By 

minimizing this loss, the encoder 𝑓𝜃 learns to map structurally 

similar states to nearby points in the latent space, regardless of the 

noise or missing sensor data introduced by augmentation [16]. 

3.5 Damage Localization via Activation Mapping 

Once the encoder is trained on healthy data, it effectively learns the 

manifold of normal structural behavior. To localize damage, we 

analyze the node-wise feature activations. When a damaged sample 

is passed through the network, the graph convolutions at the 

location of damage will generate activation patterns that deviate 

significantly from the learned healthy distribution. 

We utilize a Gradient-weighted Class Activation Mapping (Grad-

CAM) approach adapted for graphs. We compute the gradients of 

the reconstruction error (or a self-supervised discrepancy score) 

with respect to the node features in the final graph convolutional 

layer. These gradients serve as weights, highlighting which nodes 

(sensors) contributed most to the deviation from normality. These 

weights are then normalized to generate a heat map over the 

building topology, identifying the likely epicenter of structural 

damage. 

Chapter 4: Experiments and Analysis 

4.1 Experimental Setup 

To validate the proposed method, we utilized a high-fidelity Finite 

Element Model of the ASCE Benchmark Structure, a simulated 4-

story, 2-bay by 2-bay steel frame. While we also conducted tests on 
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a 10-story shear building model, the ASCE benchmark provides a 

standard for comparison. The structure was excited using white 

Gaussian noise to simulate ambient wind loading. 

Dataset Generation: 

We simulated 5,000 distinct time-series instances for the healthy 

state to train the SSL model. For testing, we generated 1,000 

instances across 5 different damage scenarios. Damage was 

induced by reducing the stiffness of specific braces or beams by 

10% to 40%. This simulates subtle to moderate structural 

degradation. 

Table 1 summarizes the dataset parameters utilized in this study. 

Parameter Value / Description 

Sampling Frequency 100 Hz 

Duration per Sample 4 seconds (400 time steps) 

Number of Sensors 16 (4 per floor) 

Training Samples (Healthy) 5,000 (Unlabeled) 

Test Samples (Damaged) 1,000 (Labeled for validation 

only) 

Noise Level 10% RMS Gaussian Noise added 

4.2 Baselines and Metrics 

We compared our Graph Contrastive Learning (GCL) 

approach against three baselines: 

1.  PCA-T2: Principal Component Analysis using Hotelling’s T-

squared statistic. 

2.  Autoencoder (AE): A standard deep fully connected 

autoencoder minimizing reconstruction error. 

3.  Supervised CNN: A convolutional network trained with 100% 

labeled damage data (serving as an upper bound for performance). 

The primary metric for detection is the F1-Score. For localization, 

we use the Localization Error (LE), defined as the topological 

distance (number of hops) between the predicted damage node and 

the actual damaged element. 
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4.3 Results and Discussion 

Anomaly Detection Performance: 

The self-supervised model demonstrated exceptional capability in 

distinguishing healthy from damaged states. By learning the 

geometric dependencies between sensors, the model identified 

stiffness reductions that caused only minor frequency shifts, which 

PCA largely missed. 

 

Figure 2: t-SNE Visualization of Embedings 

Localization Accuracy: 

Table 2 presents the localization performance. Our method 

outperforms the standard Autoencoder significantly. The 

Autoencoder often spreads the reconstruction error across all 

sensors due to the global nature of its bottleneck. In contrast, the 

GNN-based approach preserves local topology, allowing the Grad-

CAM mechanism to isolate the specific node nearest to the 

damage. 

Method Detection F1-

Score 

Localization 

Error (Hops) 

Label 

Requirement 

PCA-T2 0.72 N/A (Global 

only) 

None 

Standard 0.81 1.45 None 
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Autoencoder 

Supervised 

CNN 

0.96 0.12 100% (Full 

Labels) 

Proposed GCL 

(Ours) 

0.93 0.34 0% (Self-

Supervised) 

As shown in Table 2, our method achieves an F1-score of 0.93, 

approaching the supervised upper bound of 0.96, yet it requires 

zero damage labels during training. The localization error of 0.34 

hops indicates that, on average, the model pinpointed the exact 

damaged sensor or its immediate neighbor. 

Robustness to Noise: 

We further analyzed performance under varying noise levels. As 

the Signal-to-Noise Ratio (SNR) decreased, the performance of the 

analytical PCA method degraded rapidly. The contrastive learning 

model, however, remained robust. The "Jittering" augmentation 

during training effectively acted as a regularizer, teaching the 

model to ignore high-frequency noise components that do not 

correlate with the underlying structural graph. 

 

Figure 3: Localization Heatmap 

Chapter 5: Conclusion 

5.1 Findings Overview and Implications 
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This research has presented a robust framework for multisensor 

damage localization in buildings using self-supervised vibration 

representation learning. By integrating Graph Neural Networks 

with a contrastive learning objective, we addressed the critical 

challenge of label scarcity in Structural Health Monitoring. Our 

methodology effectively transforms raw vibration data into a rich 

latent space where structural anomalies are geometrically distinct 

from normal operational variations. 

The implications of this work are significant for the maintenance 

of civil infrastructure. The ability to train high-performance 

diagnostic models using only ambient vibration data collected from 

healthy structures removes the need for expensive and unrealistic 

damaged-state data. This paves the way for "digital twin" systems 

that can be deployed on newly constructed buildings, learning their 

baseline behavior continuously and flagging local anomalies the 

moment they arise. The use of topological constraints ensures that 

the model is not just learning statistical outliers, but physical 

discrepancies in the structural system. 

5.2 Limitations and Future Investigation 

While the proposed approach shows great promise, several 

limitations must be addressed in future work. First, the 

computational cost of training Graph Neural Networks on high-

frequency time-series data is non-trivial. For very large structures 

with thousands of sensors (e.g., long-span suspension bridges), the 

graph complexity may require more efficient sampling strategies or 

hierarchical graph pooling to remain computationally feasible. 

Second, the current study assumed a linear behavior of the 

structure in its healthy state. High-rise buildings often exhibit non-

linear behavior due to opening/closing of cracks or damping 

variation under extreme loads (e.g., typhoons). Future research 

should investigate the integration of non-linear physical priors into 

the loss function to distinguish between benign non-linearities and 

actual damage. Additionally, extending the framework to handle 

variable environmental conditions, such as drastic temperature 

shifts that affect stiffness, via disentangled representation learning, 

would further enhance the robustness of the system for real-world 

deployment. 
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