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Abstract: The domain of robotic manipulation has witnessed 

significant advancements through the application of deep 

reinforcement learning, yet substantial challenges remain regarding 

sample efficiency, generalization, and robustness against 

environmental perturbations. This paper introduces a novel 

Hierarchical Deep Reinforcement Learning framework integrated 

with a Stochastic Policy Gradient mechanism designed specifically 

to address the high-dimensional state-action spaces inherent in 

multi-joint robotic control. By decomposing complex manipulation 

tasks into temporally extended sub-goals managed by a high-level 

policy, and executing primitive motor commands via a low-level 

controller, the proposed architecture effectively mitigates the sparse 

reward problem. Furthermore, the incorporation of a stochastic 

policy gradient enables the agent to maintain extensive exploration 

capabilities while ensuring robust performance in the presence of 

sensor noise and dynamic friction changes. We demonstrate the 

efficacy of this approach through rigorous simulation experiments 

involving complex pick-and-place and stacking tasks. The results 

indicate that our method significantly outperforms varying state-of-

the-art baselines in terms of convergence speed and success rates 

under adversarial conditions. 
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1. INTRODUCTION  

The pursuit of autonomous robotic systems capable of performing 

complex manipulation tasks in unstructured environments stands as 

one of the central challenges in artificial intelligence and robotics. 

Traditional control methods, which rely heavily on precise 

kinematic modeling and trajectory planning, often struggle when 

faced with the uncertainties and variabilities of real-world physics. 

Deep reinforcement learning has emerged as a promising 

alternative, enabling robots to learn control policies directly from 

high-dimensional sensory inputs through trial and error. However, 

the application of standard deep reinforcement learning algorithms 

to robotic manipulation is frequently hindered by the curse of 

dimensionality and the sparsity of reward signals in long-horizon 

tasks [1]. As the complexity of the task increases, the likelihood of 

an agent stumbling upon a successful sequence of actions 

diminishes exponentially, leading to prohibitive training times and 

suboptimal policy convergence. To overcome these limitations, 

researchers have increasingly looked toward hierarchical structures 

that mirror biological motor control. In biological systems, complex 

behaviors are rarely planned at the level of individual muscle 

contractions; rather, they are composed of high-level intentions that 

modulate low-level reflexes and motor primitives. Hierarchical 

reinforcement learning seeks to emulate this organization by 

decomposing a difficult task into a hierarchy of sub-problems. A 

high-level policy, often termed the manager, operates at a slower 

time scale to select sub-goals or skills, while a low-level policy, the 

worker, executes the necessary actions to achieve these sub-goals 

over a faster time scale. This temporal abstraction reduces the 

effective horizon of the problem, allowing for more efficient credit 

assignment and exploration. Despite the promise of hierarchical 

approaches, a critical issue remains: the fragility of learned policies 

when subjected to environmental stochasticity. Many existing 

hierarchical methods utilize deterministic policies for the low-level 

controllers, which can become brittle when the simulation dynamics 

do not perfectly match the deployment environment or when sensors 

introduce noise. To address this, we propose integrating a stochastic 

policy gradient formulation within the hierarchical framework. 

Stochastic policies naturally encourage exploration and are 

theoretically shown to be more robust to parameter uncertainties and 

unmodeled dynamics [2]. In this paper, we present a unified 

framework that combines the temporal abstraction of hierarchical 

reinforcement learning with the robustness of stochastic policy 

gradients. Our approach utilizes a two-level hierarchy where the 

high-level manager learns to propose latent sub-goals that guide the 

low-level worker. The worker utilizes a stochastic policy to interact 

with the environment, optimizing a maximum entropy objective to 
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balance exploitation of known rewards with exploration of the state 

space. We validate our method on a suite of continuous control tasks 

involving a simulated robotic arm. Our contributions are threefold: 

first, we formalize a hierarchical architecture that seamlessly 

integrates latent goal generation with stochastic low-level control; 

second, we demonstrate that the stochastic nature of the policy 

gradient significantly improves robustness against external force 

perturbations and sensor noise; and third, we provide an extensive 

empirical analysis showing that our method achieves superior 

sample efficiency compared to flat reinforcement learning baselines. 

1.1 Motivation and Problem Formulation 

The core motivation for this research stems from the observation 

that robotic manipulation tasks are inherently compositional. A task 

such as stacking a block involves reaching, grasping, lifting, 

moving, and placing. Flat reinforcement learning agents treat this 

entire sequence as a single monolithic policy optimization problem, 

which often leads to the agent forgetting earlier stages of the task as 

it attempts to learn later stages, a phenomenon known as 

catastrophic forgetting. Furthermore, the standard objective of 

maximizing expected cumulative return does not inherently account 

for robustness. An agent might learn a trajectory that is optimal in a 

static simulation but fails catastrophically if the friction coefficient 

of the object changes slightly. We formulate the problem as a 

Markov Decision Process extended with a hierarchical structure. 

The environment provides a state vector consisting of robot joint 

angles, velocities, and object positions. The objective is to learn a 

policy that maximizes the discounted sum of rewards over an 

infinite horizon. However, unlike standard approaches, we factorize 

the policy into two components. The high-level policy maps the 

current state to a continuous sub-goal vector, updated at fixed 

intervals. The low-level policy maps the current state and the current 

sub-goal to the torque actions applied to the robot's joints. By 

injecting stochasticity into the low-level policy update rule, we aim 

to smooth the optimization landscape, preventing the agent from 

converging to sharp, unstable local minima that are characteristic of 

deterministic policy gradient methods in high-dimensional spaces 

[3]. 

2. Related Work 

The landscape of deep reinforcement learning for robotics has 

evolved rapidly, with significant efforts directed toward improving 

sample efficiency and robustness. This section reviews relevant 

literature in deep reinforcement learning, hierarchical methods, and 

robust control strategies. 

2.1 Deep Reinforcement Learning in Robotics 

Early success in applying deep learning to control problems was 

demonstrated by algorithms such as Deep Q-Networks and Deep 
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Deterministic Policy Gradients. Deep Deterministic Policy 

Gradients, specifically designed for continuous action spaces, 

utilized an actor-critic architecture where a deterministic policy was 

trained using the gradient of the value function. While successful in 

many benchmarks, Deep Deterministic Policy Gradients is known 

to be highly sensitive to hyperparameter selection and prone to 

instability. Subsequent improvements, such as Twin Delayed Deep 

Deterministic Policy Gradients, addressed the overestimation bias 

of Q-values but retained the deterministic nature of the policy. In 

contrast, approaches like Soft Actor-Critic introduced an entropy 

regularization term, encouraging the policy to remain stochastic [4]. 

Our work builds upon the benefits of maximum entropy 

reinforcement learning observed in Soft Actor-Critic but extends it 

into a hierarchical domain to handle long-horizon tasks that single-

level Soft Actor-Critic struggles to solve. 

2.2 Hierarchical Reinforcement Learning 

Hierarchical Reinforcement Learning has a long history, dating back 

to the options framework which formalized temporally extended 

actions. In the deep learning era, Feudal Networks proposed a 

manager-worker architecture where the manager sets goals in a 

latent space. However, training such hierarchies is notoriously 

difficult due to the non-stationarity of the transition function 

perceived by the high-level policy; as the low-level policy changes, 

the outcome of a high-level action (setting a goal) changes as well. 

Recent works such as HIRO (Hierarchical Reinforcement Learning 

with Off-Policy Correction) have attempted to mitigate this by 

relabeling past experiences with high-level actions that would have 

made the observed transitions likely [5]. Our approach differs from 

HIRO by employing a stochastic gradient estimator at the lower 

level which inherently handles the exploration-exploitation trade-off 

more effectively than the deterministic noise added to actions in 

HIRO. Furthermore, we employ a specific goal-transition 

mechanism that ensures smoothness in the latent goal space, 

facilitating stable learning for the high-level manager. 

2.3 Robustness and Stochastic Policies 

Robustness in reinforcement learning is often approached through 

domain randomization, where the physical parameters of the 

simulation are varied during training to encourage the agent to learn 

a generalized policy. While effective, domain randomization relies 

on the assumption that the real-world dynamics lie within the 

distribution of the randomized parameters. Theoretical work on 

policy gradients suggests that stochastic policies optimize a 

smoothed version of the objective function, making them less likely 

to exploit modeling errors in the simulator [6]. Trust Region Policy 

Optimization and Proximal Policy Optimization have utilized 

constraints on the policy update to ensure stability, but they are often 



Page 17 of 11 
 

applied in a flat hierarchy. Research combining hierarchy with 

robust control is limited. Some studies have explored using robust 

adversarial reinforcement learning within a hierarchical setup, 

where an adversary applies forces to the agent [7]. Our work 

complements these approaches by demonstrating that intrinsic 

stochasticity in the policy gradient update serves as a powerful 

mechanism for robustness without the need for an explicit adversary 

during training. 

3. Methodology 

We propose a Hierarchical Stochastic Policy Gradient framework 

designed for continuous control in robotic manipulation. The 

architecture consists of two distinct neural network policies 

operating at different temporal resolutions. The interaction is 

governed by a manager policy and a worker policy. The manager 

observes the state of the environment and produces a high-level 

goal. The worker observes both the environment state and the goal 

provided by the manager, producing the primitive actions. 

3.1 Hierarchical Architecture and Temporal Abstraction 

The foundation of our approach is the temporal abstraction that 

separates high-level planning from low-level execution. Let the 

decision process be modeled over discrete time steps. The manager 

operates at a lower frequency, updating its decision every fixed 

number of atomic time steps. At the start of a high-level cycle, the 

manager observes the state and generates a goal vector. This goal 

vector is not a specific coordinate in the Cartesian space but rather 

a latent representation that directs the worker toward a desired 

reconfiguration of the environment. The worker operates at the 

atomic frequency of the simulation. It receives the current state and 

the goal vector as input. Importantly, the goal vector is not static 

during the execution of the low-level steps; it transitions according 

to a fixed transition function to guide the worker. For instance, if the 

goal represents a relative change in position, the goal vector is 

decremented by the change in the state at each step, effectively 

creating a moving target that draws the agent toward the desired 

state. This technique allows the worker to learn a goal-conditioned 

policy that is generalizable across different sub-tasks requested by 

the manager. The reward function is also decomposed: the manager 

is rewarded based on the extrinsic task reward (e.g., whether the 

object was successfully stacked), while the worker is rewarded 

based on its intrinsic ability to reach the sub-goal states prescribed 

by the manager. This decoupling allows the worker to learn valid 

motor primitives even before the manager has learned how to chain 

them together effectively [8]. 

3.2 Stochastic Policy Gradient Formulation 

To ensure robustness and effective exploration, we employ a 

stochastic policy gradient method for the worker network. Unlike 
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deterministic approaches that output a single action vector, our 

worker network outputs the parameters of a probability distribution 

(specifically, a Gaussian distribution with a diagonal covariance 

matrix) over the action space. The policy is parameterized by a 

neural network that outputs the mean and the logarithm of the 

standard deviation. The optimization objective involves maximizing 

the expected return augmented by an entropy term. The entropy term 

prevents the policy from collapsing to a deterministic point too early 

in the training process, which is a common failure mode in robotic 

manipulation where precise contacts are required. By maintaining a 

non-zero probability mass over a range of actions, the agent can 

escape local optima. The gradient of this objective is estimated using 

the reparameterization trick, which allows for backpropagation 

through the stochastic node. This results in a low-variance gradient 

estimator that facilitates stable learning. Critically, the stochasticity 

is not merely for exploration during training; it is an integral part of 

the policy's representation. In the context of robotic manipulation, 

where contact dynamics are discontinuous and difficult to model 

perfectly, a stochastic policy acts as a smoothing operator. When the 

robot's gripper contacts an object, a deterministic policy might apply 

a precise force that works in simulation but causes slippage in reality 

due to friction differences. The stochastic policy, having been 

trained to maximize expected return under a distribution of actions, 

essentially learns a strategy that is robust to small variations in 

execution, thereby improving the sim-to-real transferability 

potential [9]. 

3.3 Goal Consistency and Off-Policy Correction 

Since we utilize an off-policy learning algorithm to improve sample 

efficiency, we must address the non-stationarity introduced by the 

changing policies. Data collected by the worker at an earlier stage 

of training was generated under a different manager policy and a 

different worker policy. To utilize this data effectively, we employ 

an off-policy correction mechanism. When sampling a trajectory 

from the replay buffer for training the manager, we must determine 

if the actions taken by the worker in that historical trajectory could 

be plausibly attributed to the current goal generation strategy. We 

implement a relabeling strategy where we re-evaluate the high-level 

goals. For a given transition in the replay buffer, we compute the 

probability that the current worker policy would perform the 

recorded action given the recorded goal. If this probability is low, it 

implies that the goal recorded in the buffer is no longer consistent 

with the current low-level behavior. In such cases, we search for a 

new goal that maximizes the likelihood of the observed low-level 

actions. This retrospective goal relabeling allows the manager to 

learn from historical data by reinterpreting past successes (or 

failures) in the context of its current capabilities. This aligns with 
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recent findings in the literature suggesting that hindsight is crucial 

for learning sparse-reward tasks [10]. 

4. Experimental Setup 

To validate the proposed Hierarchical Stochastic Policy Gradient 

algorithm, we conducted a series of experiments using a high-

fidelity physics simulator. The primary objective was to evaluate the 

algorithm's performance in standard robotic manipulation tasks and 

its robustness to environmental perturbations compared to 

established baselines. 

4.1 Simulation Environment 

We utilized the MuJoCo physics engine to simulate a 7-DOF robotic 

arm equipped with a parallel-jaw gripper. The state space includes 

the joint angles, joint velocities, the Cartesian position and 

orientation of the gripper, and the position and orientation of the 

target objects. The action space consists of continuous torque 

commands applied to the seven joints and the gripper actuator. 

We defined three distinct tasks of increasing complexity: 

1.Reach: The robot must move its end-effector to a randomly 

generated target position in 3D space. 

2.Pick-and-Place: The robot must grasp a block from a table and 

lift it to a target position. 

3.Block Stacking: The robot must locate a block, grasp it, and 

balance it on top of another block. These tasks require precision, 

coordination, and the ability to handle contact dynamics. The Block 

Stacking task, in particular, is a long-horizon problem where flat 

reinforcement learning algorithms typically struggle due to the 

vanishing gradient of the reward signal over time. 

4.2 Baselines and Hyperparameters 

We compared our proposed method against two strong baselines: 

1.Deep Deterministic Policy Gradient (DDPG): A standard flat, 

off-policy algorithm using deterministic policies. 

2.Soft Actor-Critic (SAC): A flat, off-policy algorithm using 

stochastic policies and entropy maximization. Both baselines were 

trained with identical network architectures (number of layers and 

hidden units) as the worker network in our hierarchical model to 

ensure a fair comparison. The hierarchical manager network used a 

similar architecture but with inputs tailored to the high-level state 

representation. 

Table 1: Hyperparameter settings used for the high-level manager 

and low-level worker networks 

Parameter Manager Value Worker Value 

Learning Rate 0.0001 0.0003 

Batch Size 128 256 

Replay Buffer Size 200,000 1,000,000 

Discount Factor 0.99 0.99 

Soft Update Rate 0.005 0.005 
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Entropy Coefficient N/A 0.2 

The training was conducted over 10 million atomic time steps for 

each task. We used distinct random seeds for five independent runs 

to ensure statistical significance. The reward function for the Pick-

and-Place task included components for reaching the object, 

grasping the object, and lifting the object to the target height, while 

the Stacking task added a sparse reward for successful balancing. 

5. Results and Analysis 

The experimental results provide compelling evidence for the 

advantages of the proposed Hierarchical Stochastic Policy Gradient 

algorithm. We analyze the performance in terms of learning 

efficiency, asymptotic performance, and robustness to external 

disturbances. 

5.1 Learning Performance 

In the simpler Reach task, all algorithms converged to a successful 

policy. However, significant differences emerged in the 

manipulation tasks. Figure 1 illustrates the learning curves for the 

Block Stacking task. The flat DDPG baseline struggled to learn the 

task, often plateauing at a sub-optimal policy where the robot could 

reach the object but failed to grasp or stack it consistently. This 

failure is attributed to the lack of exploration in the deterministic 

policy, causing the agent to get stuck in local optima. 

 
Figure 1: Comparative Learning Curves 

The SAC baseline performed better than DDPG, confirming the 

benefits of stochasticity and entropy regularization [11]. However, 

it still required a substantial number of samples to discover the 

stacking behavior. Our proposed hierarchical method demonstrated 

the fastest convergence rate. The manager quickly learned to 

decompose the task into approaching and lifting, while the worker 
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efficiently learned the motor control for these sub-goals. The 

hierarchy allowed the agent to bridge the temporal gap between 

actions and rewards, effectively solving the credit assignment 

problem. 

5.2 Robustness to Perturbations 

A critical component of our evaluation was determining the 

robustness of the learned policies. After training, we subjected the 

agents to an adversarial test environment where random external 

forces were applied to the robot's end-effector during trajectory 

execution. These forces simulate the unmodeled dynamics or 

collisions that might occur in a real-world setting. 

Table 2: Success rates of different algorithms under varying 

environmental perturbation levels 

Algorithm 0N Force 5N Force 10N Force 15N Force 

DDPG (Flat) 65% 42% 15% 4% 

SAC (Flat) 82% 71% 55% 30% 

**Proposed 

Method** 

**94%** **89%** **78%** **62%** 

As shown in Table 2, the performance of the deterministic DDPG 

policy degraded rapidly as the magnitude of the disturbing force 

increased. The policy, having overfitted to the precise dynamics of 

the training environment, lacked the compliance to recover from 

perturbations. The SAC baseline showed improved robustness, 

retaining decent performance at moderate noise levels. However, 

our proposed Hierarchical Stochastic Policy Gradient method 

exhibited the highest degree of robustness. Even at 15N of 

disturbing force, the agent maintained a success rate of 62%. 

We attribute this robustness to two factors. First, the stochastic 

nature of the low-level worker policy, similar to SAC, learns a 

distribution of valid actions rather than a single optimal path, 

providing inherent compliance. Second, the hierarchical structure 

allows for correction at multiple levels. If a perturbation pushes the 

robot off course, the low-level worker attempts to correct it 

immediately. If the worker fails to reach the sub-goal within the 

allocated time, the high-level manager observes the new state 

(which captures the deviation) and generates a new sub-goal to 

recover from the error. This multi-scale feedback loop creates a 

system that is resilient to significant disruptions [12]. 

5.3 Ablation Studies 

To verify the individual contributions of the hierarchy and the 

stochasticity, we performed ablation studies. We trained a version of 

our hierarchical model using a deterministic Deep Deterministic 

Policy Gradient-style worker (Hierarchical-DDPG). While this 

model converged faster than the flat DDPG, it failed to achieve the 

high success rates of our stochastic variant in the presence of noise. 
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This confirms that while hierarchy aids in sample efficiency and 

temporal abstraction, the stochastic policy gradient is essential for 

robustness and fine-grained motor control in contact-rich 

environments. Conversely, removing the hierarchy (resulting in 

standard SAC) reduced the success rate on the long-horizon 

Stacking task, reaffirming the necessity of temporal abstraction for 

complex sequencing. 

6. Conclusion 

In this paper, we presented a Hierarchical Deep Reinforcement 

Learning Algorithm with Stochastic Policy Gradient, a novel 

framework designed to address the dual challenges of sample 

efficiency and robustness in robotic manipulation. By decomposing 

complex tasks into a two-level hierarchy, we enabled the agent to 

learn high-level strategies and low-level motor primitives 

simultaneously. The integration of stochastic policy gradients into 

the low-level controller provided a mechanism for effective 

exploration and resulted in policies that are remarkably robust to 

environmental perturbations. Our experimental results on simulated 

robotic manipulation tasks demonstrated that the proposed method 

outperforms standard flat reinforcement learning baselines in both 

learning speed and final task success rates. Furthermore, the 

robustness analysis highlighted the superior ability of our agent to 

maintain performance under external disturbances, a critical 

property for the eventual deployment of such systems in the real 

world. Future work will focus on bridging the gap between 

simulation and reality. We intend to validate the proposed algorithm 

on physical robotic hardware, investigating how the stochasticity of 

the policy interacts with real sensor noise and mechanical backlash. 

Additionally, we plan to explore adaptive time-scales for the 

hierarchy, allowing the manager to dynamically adjust the duration 

of sub-goals based on the complexity of the current interaction. This 

research represents a step forward in the development of intelligent, 

resilient robotic systems capable of operating in unstructured and 

unpredictable human environments. 
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