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Abstract: The domain of robotic manipulation has witnessed
significant advancements through the application of deep
reinforcement learning, yet substantial challenges remain regarding
sample efficiency, generalization, and robustness against
environmental perturbations. This paper introduces a novel
Hierarchical Deep Reinforcement Learning framework integrated
with a Stochastic Policy Gradient mechanism designed specifically
to address the high-dimensional state-action spaces inherent in
multi-joint robotic control. By decomposing complex manipulation
tasks into temporally extended sub-goals managed by a high-level
policy, and executing primitive motor commands via a low-level
controller, the proposed architecture effectively mitigates the sparse
reward problem. Furthermore, the incorporation of a stochastic
policy gradient enables the agent to maintain extensive exploration
capabilities while ensuring robust performance in the presence of
sensor noise and dynamic friction changes. We demonstrate the
efficacy of this approach through rigorous simulation experiments
involving complex pick-and-place and stacking tasks. The results
indicate that our method significantly outperforms varying state-of-
the-art baselines in terms of convergence speed and success rates
under adversarial conditions.
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1. INTRODUCTION

The pursuit of autonomous robotic systems capable of performing
complex manipulation tasks in unstructured environments stands as
one of the central challenges in artificial intelligence and robotics.
Traditional control methods, which rely heavily on precise
kinematic modeling and trajectory planning, often struggle when
faced with the uncertainties and variabilities of real-world physics.
Deep reinforcement learning has emerged as a promising
alternative, enabling robots to learn control policies directly from
high-dimensional sensory inputs through trial and error. However,
the application of standard deep reinforcement learning algorithms
to robotic manipulation is frequently hindered by the curse of
dimensionality and the sparsity of reward signals in long-horizon
tasks [1]. As the complexity of the task increases, the likelihood of
an agent stumbling upon a successful sequence of actions
diminishes exponentially, leading to prohibitive training times and
suboptimal policy convergence. To overcome these limitations,
researchers have increasingly looked toward hierarchical structures
that mirror biological motor control. In biological systems, complex
behaviors are rarely planned at the level of individual muscle
contractions; rather, they are composed of high-level intentions that
modulate low-level reflexes and motor primitives. Hierarchical
reinforcement learning seeks to emulate this organization by
decomposing a difficult task into a hierarchy of sub-problems. A
high-level policy, often termed the manager, operates at a slower
time scale to select sub-goals or skills, while a low-level policy, the
worker, executes the necessary actions to achieve these sub-goals
over a faster time scale. This temporal abstraction reduces the
effective horizon of the problem, allowing for more efficient credit
assignment and exploration. Despite the promise of hierarchical
approaches, a critical issue remains: the fragility of learned policies
when subjected to environmental stochasticity. Many existing
hierarchical methods utilize deterministic policies for the low-level
controllers, which can become brittle when the simulation dynamics
do not perfectly match the deployment environment or when sensors
introduce noise. To address this, we propose integrating a stochastic
policy gradient formulation within the hierarchical framework.
Stochastic policies naturally encourage exploration and are
theoretically shown to be more robust to parameter uncertainties and
unmodeled dynamics [2]. In this paper, we present a unified
framework that combines the temporal abstraction of hierarchical
reinforcement learning with the robustness of stochastic policy
gradients. Our approach utilizes a two-level hierarchy where the
high-level manager learns to propose latent sub-goals that guide the
low-level worker. The worker utilizes a stochastic policy to interact
with the environment, optimizing a maximum entropy objective to
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balance exploitation of known rewards with exploration of the state
space. We validate our method on a suite of continuous control tasks
involving a simulated robotic arm. Our contributions are threefold:
first, we formalize a hierarchical architecture that seamlessly
integrates latent goal generation with stochastic low-level control;
second, we demonstrate that the stochastic nature of the policy
gradient significantly improves robustness against external force
perturbations and sensor noise; and third, we provide an extensive
empirical analysis showing that our method achieves superior
sample efficiency compared to flat reinforcement learning baselines.
1.1 Motivation and Problem Formulation

The core motivation for this research stems from the observation
that robotic manipulation tasks are inherently compositional. A task
such as stacking a block involves reaching, grasping, lifting,
moving, and placing. Flat reinforcement learning agents treat this
entire sequence as a single monolithic policy optimization problem,
which often leads to the agent forgetting earlier stages of the task as
it attempts to learn later stages, a phenomenon known as
catastrophic forgetting. Furthermore, the standard objective of
maximizing expected cumulative return does not inherently account
for robustness. An agent might learn a trajectory that is optimal in a
static simulation but fails catastrophically if the friction coefficient
of the object changes slightly. We formulate the problem as a
Markov Decision Process extended with a hierarchical structure.
The environment provides a state vector consisting of robot joint
angles, velocities, and object positions. The objective is to learn a
policy that maximizes the discounted sum of rewards over an
infinite horizon. However, unlike standard approaches, we factorize
the policy into two components. The high-level policy maps the
current state to a continuous sub-goal vector, updated at fixed
intervals. The low-level policy maps the current state and the current
sub-goal to the torque actions applied to the robot's joints. By
injecting stochasticity into the low-level policy update rule, we aim
to smooth the optimization landscape, preventing the agent from
converging to sharp, unstable local minima that are characteristic of
deterministic policy gradient methods in high-dimensional spaces
[3].

2. Related Work

The landscape of deep reinforcement learning for robotics has
evolved rapidly, with significant efforts directed toward improving
sample efficiency and robustness. This section reviews relevant
literature in deep reinforcement learning, hierarchical methods, and
robust control strategies.

2.1 Deep Reinforcement Learning in Robotics

Early success in applying deep learning to control problems was
demonstrated by algorithms such as Deep Q-Networks and Deep
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Deterministic Policy Gradients. Deep Deterministic Policy
Gradients, specifically designed for continuous action spaces,
utilized an actor-critic architecture where a deterministic policy was
trained using the gradient of the value function. While successful in
many benchmarks, Deep Deterministic Policy Gradients is known
to be highly sensitive to hyperparameter selection and prone to
instability. Subsequent improvements, such as Twin Delayed Deep
Deterministic Policy Gradients, addressed the overestimation bias
of Q-values but retained the deterministic nature of the policy. In
contrast, approaches like Soft Actor-Critic introduced an entropy
regularization term, encouraging the policy to remain stochastic [4].
Our work builds upon the benefits of maximum entropy
reinforcement learning observed in Soft Actor-Critic but extends it
into a hierarchical domain to handle long-horizon tasks that single-
level Soft Actor-Critic struggles to solve.

2.2 Hierarchical Reinforcement Learning

Hierarchical Reinforcement Learning has a long history, dating back
to the options framework which formalized temporally extended
actions. In the deep learning era, Feudal Networks proposed a
manager-worker architecture where the manager sets goals in a
latent space. However, training such hierarchies is notoriously
difficult due to the non-stationarity of the transition function
perceived by the high-level policy; as the low-level policy changes,
the outcome of a high-level action (setting a goal) changes as well.
Recent works such as HIRO (Hierarchical Reinforcement Learning
with Off-Policy Correction) have attempted to mitigate this by
relabeling past experiences with high-level actions that would have
made the observed transitions likely [S]. Our approach differs from
HIRO by employing a stochastic gradient estimator at the lower
level which inherently handles the exploration-exploitation trade-oft
more effectively than the deterministic noise added to actions in
HIRO. Furthermore, we employ a specific goal-transition
mechanism that ensures smoothness in the latent goal space,
facilitating stable learning for the high-level manager.

2.3 Robustness and Stochastic Policies

Robustness in reinforcement learning is often approached through
domain randomization, where the physical parameters of the
simulation are varied during training to encourage the agent to learn
a generalized policy. While effective, domain randomization relies
on the assumption that the real-world dynamics lie within the
distribution of the randomized parameters. Theoretical work on
policy gradients suggests that stochastic policies optimize a
smoothed version of the objective function, making them less likely
to exploit modeling errors in the simulator [6]. Trust Region Policy
Optimization and Proximal Policy Optimization have utilized
constraints on the policy update to ensure stability, but they are often
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applied in a flat hierarchy. Research combining hierarchy with
robust control is limited. Some studies have explored using robust
adversarial reinforcement learning within a hierarchical setup,
where an adversary applies forces to the agent [7]. Our work
complements these approaches by demonstrating that intrinsic
stochasticity in the policy gradient update serves as a powerful
mechanism for robustness without the need for an explicit adversary
during training.

3. Methodology

We propose a Hierarchical Stochastic Policy Gradient framework
designed for continuous control in robotic manipulation. The
architecture consists of two distinct neural network policies
operating at different temporal resolutions. The interaction is
governed by a manager policy and a worker policy. The manager
observes the state of the environment and produces a high-level
goal. The worker observes both the environment state and the goal
provided by the manager, producing the primitive actions.

3.1 Hierarchical Architecture and Temporal Abstraction

The foundation of our approach is the temporal abstraction that
separates high-level planning from low-level execution. Let the
decision process be modeled over discrete time steps. The manager
operates at a lower frequency, updating its decision every fixed
number of atomic time steps. At the start of a high-level cycle, the
manager observes the state and generates a goal vector. This goal
vector is not a specific coordinate in the Cartesian space but rather
a latent representation that directs the worker toward a desired
reconfiguration of the environment. The worker operates at the
atomic frequency of the simulation. It receives the current state and
the goal vector as input. Importantly, the goal vector is not static
during the execution of the low-level steps; it transitions according
to a fixed transition function to guide the worker. For instance, if the
goal represents a relative change in position, the goal vector is
decremented by the change in the state at each step, effectively
creating a moving target that draws the agent toward the desired
state. This technique allows the worker to learn a goal-conditioned
policy that is generalizable across different sub-tasks requested by
the manager. The reward function is also decomposed: the manager
is rewarded based on the extrinsic task reward (e.g., whether the
object was successfully stacked), while the worker is rewarded
based on its intrinsic ability to reach the sub-goal states prescribed
by the manager. This decoupling allows the worker to learn valid
motor primitives even before the manager has learned how to chain
them together effectively [8].

3.2 Stochastic Policy Gradient Formulation

To ensure robustness and effective exploration, we employ a
stochastic policy gradient method for the worker network. Unlike
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deterministic approaches that output a single action vector, our
worker network outputs the parameters of a probability distribution
(specifically, a Gaussian distribution with a diagonal covariance
matrix) over the action space. The policy is parameterized by a
neural network that outputs the mean and the logarithm of the
standard deviation. The optimization objective involves maximizing
the expected return augmented by an entropy term. The entropy term
prevents the policy from collapsing to a deterministic point too early
in the training process, which is a common failure mode in robotic
manipulation where precise contacts are required. By maintaining a
non-zero probability mass over a range of actions, the agent can
escape local optima. The gradient of this objective is estimated using
the reparameterization trick, which allows for backpropagation
through the stochastic node. This results in a low-variance gradient
estimator that facilitates stable learning. Critically, the stochasticity
is not merely for exploration during training; it is an integral part of
the policy's representation. In the context of robotic manipulation,
where contact dynamics are discontinuous and difficult to model
perfectly, a stochastic policy acts as a smoothing operator. When the
robot's gripper contacts an object, a deterministic policy might apply
a precise force that works in simulation but causes slippage in reality
due to friction differences. The stochastic policy, having been
trained to maximize expected return under a distribution of actions,
essentially learns a strategy that is robust to small variations in
execution, thereby improving the sim-to-real transferability
potential [9].

3.3 Goal Consistency and Off-Policy Correction

Since we utilize an off-policy learning algorithm to improve sample
efficiency, we must address the non-stationarity introduced by the
changing policies. Data collected by the worker at an earlier stage
of training was generated under a different manager policy and a
different worker policy. To utilize this data effectively, we employ
an off-policy correction mechanism. When sampling a trajectory
from the replay buffer for training the manager, we must determine
if the actions taken by the worker in that historical trajectory could
be plausibly attributed to the current goal generation strategy. We
implement a relabeling strategy where we re-evaluate the high-level
goals. For a given transition in the replay buffer, we compute the
probability that the current worker policy would perform the
recorded action given the recorded goal. If this probability is low, it
implies that the goal recorded in the buffer is no longer consistent
with the current low-level behavior. In such cases, we search for a
new goal that maximizes the likelihood of the observed low-level
actions. This retrospective goal relabeling allows the manager to
learn from historical data by reinterpreting past successes (or
failures) in the context of its current capabilities. This aligns with
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recent findings in the literature suggesting that hindsight is crucial
for learning sparse-reward tasks [10].

4. Experimental Setup

To validate the proposed Hierarchical Stochastic Policy Gradient
algorithm, we conducted a series of experiments using a high-
fidelity physics simulator. The primary objective was to evaluate the
algorithm's performance in standard robotic manipulation tasks and
its robustness to environmental perturbations compared to
established baselines.

4.1 Simulation Environment

We utilized the MuJoCo physics engine to simulate a 7-DOF robotic
arm equipped with a parallel-jaw gripper. The state space includes
the joint angles, joint velocities, the Cartesian position and
orientation of the gripper, and the position and orientation of the
target objects. The action space consists of continuous torque
commands applied to the seven joints and the gripper actuator.

We defined three distinct tasks of increasing complexity:

I.Reach: The robot must move its end-effector to a randomly
generated target position in 3D space.

2.Pick-and-Place: The robot must grasp a block from a table and
lift it to a target position.

3.Block Stacking: The robot must locate a block, grasp it, and
balance it on top of another block. These tasks require precision,
coordination, and the ability to handle contact dynamics. The Block
Stacking task, in particular, is a long-horizon problem where flat
reinforcement learning algorithms typically struggle due to the
vanishing gradient of the reward signal over time.

4.2 Baselines and Hyperparameters

We compared our proposed method against two strong baselines:
1.Deep Deterministic Policy Gradient (DDPG): A standard flat,
off-policy algorithm using deterministic policies.

2.8oft Actor-Critic (SAC): A flat, off-policy algorithm using
stochastic policies and entropy maximization. Both baselines were
trained with identical network architectures (number of layers and
hidden units) as the worker network in our hierarchical model to
ensure a fair comparison. The hierarchical manager network used a
similar architecture but with inputs tailored to the high-level state
representation.

Table 1: Hyperparameter settings used for the high-level manager
and low-level worker networks

Parameter Manager Value Worker Value
Learning Rate 0.0001 0.0003

Batch Size 128 256

Replay Buffer Size 200,000 1,000,000
Discount Factor 0.99 0.99

Soft Update Rate 0.005 0.005
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Entropy Coefficient N/A 0.2

The training was conducted over 10 million atomic time steps for
each task. We used distinct random seeds for five independent runs
to ensure statistical significance. The reward function for the Pick-
and-Place task included components for reaching the object,
grasping the object, and lifting the object to the target height, while
the Stacking task added a sparse reward for successful balancing.
5. Results and Analysis

The experimental results provide compelling evidence for the
advantages of the proposed Hierarchical Stochastic Policy Gradient
algorithm. We analyze the performance in terms of learning
efficiency, asymptotic performance, and robustness to external
disturbances.

5.1 Learning Performance

In the simpler Reach task, all algorithms converged to a successful
policy. However, significant differences emerged in the
manipulation tasks. Figure 1 illustrates the learning curves for the
Block Stacking task. The flat DDPG baseline struggled to learn the
task, often plateauing at a sub-optimal policy where the robot could
reach the object but failed to grasp or stack it consistently. This
failure is attributed to the lack of exploration in the deterministic
policy, causing the agent to get stuck in local optima.

Figure 1: Comparative Learning Curves
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Figure 1: Comparative Learning Curves
The SAC baseline performed better than DDPG, confirming the
benefits of stochasticity and entropy regularization [11]. However,
it still required a substantial number of samples to discover the
stacking behavior. Our proposed hierarchical method demonstrated
the fastest convergence rate. The manager quickly learned to
decompose the task into approaching and lifting, while the worker
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efficiently learned the motor control for these sub-goals. The
hierarchy allowed the agent to bridge the temporal gap between
actions and rewards, effectively solving the credit assignment
problem.

5.2 Robustness to Perturbations

A critical component of our evaluation was determining the
robustness of the learned policies. After training, we subjected the
agents to an adversarial test environment where random external
forces were applied to the robot's end-effector during trajectory
execution. These forces simulate the unmodeled dynamics or
collisions that might occur in a real-world setting.

Table 2: Success rates of different algorithms under varying
environmental perturbation levels

Algorithm ON Force 5N Force 10N Force 15N Force

DDPG (Flat) 65% 42% 15% 4%

SAC (Flat) 82% 71% 55% 30%

**Proposed **94%** **%8Q0p** *ERTRY** *%62%p**
Method**

As shown in Table 2, the performance of the deterministic DDPG
policy degraded rapidly as the magnitude of the disturbing force
increased. The policy, having overfitted to the precise dynamics of
the training environment, lacked the compliance to recover from
perturbations. The SAC baseline showed improved robustness,
retaining decent performance at moderate noise levels. However,
our proposed Hierarchical Stochastic Policy Gradient method
exhibited the highest degree of robustness. Even at 15N of
disturbing force, the agent maintained a success rate of 62%.

We attribute this robustness to two factors. First, the stochastic
nature of the low-level worker policy, similar to SAC, learns a
distribution of valid actions rather than a single optimal path,
providing inherent compliance. Second, the hierarchical structure
allows for correction at multiple levels. If a perturbation pushes the
robot off course, the low-level worker attempts to correct it
immediately. If the worker fails to reach the sub-goal within the
allocated time, the high-level manager observes the new state
(which captures the deviation) and generates a new sub-goal to
recover from the error. This multi-scale feedback loop creates a
system that is resilient to significant disruptions [12].

5.3 Ablation Studies

To verify the individual contributions of the hierarchy and the
stochasticity, we performed ablation studies. We trained a version of
our hierarchical model using a deterministic Deep Deterministic
Policy Gradient-style worker (Hierarchical-DDPG). While this
model converged faster than the flat DDPG, it failed to achieve the
high success rates of our stochastic variant in the presence of noise.
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This confirms that while hierarchy aids in sample efficiency and
temporal abstraction, the stochastic policy gradient is essential for
robustness and fine-grained motor control in contact-rich
environments. Conversely, removing the hierarchy (resulting in
standard SAC) reduced the success rate on the long-horizon
Stacking task, reaffirming the necessity of temporal abstraction for
complex sequencing.
6. Conclusion
In this paper, we presented a Hierarchical Deep Reinforcement
Learning Algorithm with Stochastic Policy Gradient, a novel
framework designed to address the dual challenges of sample
efficiency and robustness in robotic manipulation. By decomposing
complex tasks into a two-level hierarchy, we enabled the agent to
learn high-level strategies and low-level motor primitives
simultaneously. The integration of stochastic policy gradients into
the low-level controller provided a mechanism for effective
exploration and resulted in policies that are remarkably robust to
environmental perturbations. Our experimental results on simulated
robotic manipulation tasks demonstrated that the proposed method
outperforms standard flat reinforcement learning baselines in both
learning speed and final task success rates. Furthermore, the
robustness analysis highlighted the superior ability of our agent to
maintain performance under external disturbances, a critical
property for the eventual deployment of such systems in the real
world. Future work will focus on bridging the gap between
simulation and reality. We intend to validate the proposed algorithm
on physical robotic hardware, investigating how the stochasticity of
the policy interacts with real sensor noise and mechanical backlash.
Additionally, we plan to explore adaptive time-scales for the
hierarchy, allowing the manager to dynamically adjust the duration
of sub-goals based on the complexity of the current interaction. This
research represents a step forward in the development of intelligent,
resilient robotic systems capable of operating in unstructured and
unpredictable human environments.
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