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Abstract: The emergence of large language models (LLMs) has
fundamentally transformed artificial intelligence (Al) research and
applications, positioning these systems as potential candidates for
general purpose intelligence. Large language models are deep
neural networks trained on massive text corpora that demonstrate
remarkable capabilities across diverse cognitive tasks without
task-specific fine-tuning. This review examines how LLMSs function
as general intelligence systems, with particular emphasis on three
core cognitive domains: reasoning, planning, and decision making.
We analyze the architectural foundations that enable LLMs to
perform complex reasoning tasks, including chain-of-thought
prompting (CoT), in-context learning (ICL), and emergent abilities
that arise from scale. The planning capabilities of LLMs are
evaluated through their performance on multi-step problem
decomposition, goal-oriented task completion, and strategic action
sequencing.  Furthermore, we investigate decision-making
frameworks where LLMs serve as autonomous agents, policy
advisors, and collaborative systems that integrate human expertise
with machine intelligence. The review synthesizes recent advances
in prompt engineering, retrieval-augmented generation (RAG), and
multimodal integration that enhance LLM capabilities for general
intelligence tasks. We examine real-world applications spanning
healthcare diagnosis, financial analysis, scientific discovery, and
autonomous systems management. Critical challenges including
hallucination, reasoning consistency, computational efficiency, and
ethical ~ conmsiderations are  thoroughly  discussed.  This
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comprehensive analysis demonstrates that while LLMs exhibit
significant progress toward general purpose intelligence,
fundamental limitations in causal understanding, long-term
planning coherence, and adaptive learning remain open research
challenges that require continued innovation in architecture
design, training methodologies, and evaluation frameworks.
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reasoning systems, planning algorithms, decision making, artificial
intelligence, cognitive capabilities, chain-of-thought, in-context
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INTRODUCTION

The pursuit of artificial general intelligence (AGI) has been a
central aspiration of artificial intelligence (Al) research since the
field's inception, representing the goal of creating systems that can
match or exceed human cognitive capabilities across diverse
domains. Recent advances in large language models (LLMs) have
catalyzed renewed optimism and intense debate regarding the
feasibility of achieving general purpose intelligence through scaled
neural architectures. Large language models, exemplified by
systems such as Generative Pre-trained Transformer (GPT) series,
PaLM, Claude, and LLaMA, have demonstrated unprecedented
capabilities in natural language processing (NLP) tasks while
exhibiting emergent behaviors that extend far beyond their initial
training objectives [1]. These systems, trained on trillions of tokens
from diverse text sources, have shown remarkable proficiency in
tasks requiring reasoning, planning, and decision making—
cognitive functions traditionally considered hallmarks of human
intelligence.

The transformer architecture provides the foundational framework
for modern LLMs through its self-attention mechanism that
enables parallel processing of sequential data and long-range
dependency modeling [2]. The scaling hypothesis, which posits
that increasing model parameters, training data, and computational
resources leads to qualitative improvements in capabilities, has
been empirically validated across multiple dimensions of
performance [3]. Models with billions to trillions of parameters
have exhibited abilities that were absent in smaller counterparts,
including in-context learning (ICL) where models adapt to new
tasks from examples provided in the prompt without parameter
updates [4]. This emergent capability suggests that LLMs may
possess latent general intelligence that manifests when sufficient
scale is achieved.
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Reasoning represents a fundamental cognitive capability that
distinguishes intelligent systems from simple pattern matchers.
LLMs have demonstrated various reasoning modalities including
logical inference, mathematical problem-solving, commonsense
reasoning, and analogical thinking [5]. The introduction of chain-
of-thought (CoT) prompting techniques, which encourage models
to articulate intermediate reasoning steps, has significantly
enhanced performance on complex reasoning tasks [6]. Studies
have shown that CoT prompting enables LLMs to solve multi-hop
reasoning problems that require synthesizing information across
multiple sources and performing sequential logical operations.
However, the extent to which these reasoning capabilities reflect
genuine understanding versus sophisticated pattern matching
remains a subject of ongoing investigation and debate within the
research community.

Planning involves the decomposition of complex goals into
actionable sequences of steps, temporal reasoning about action
consequences, and adaptive strategy formulation in dynamic
environments. Recent research has explored LLMs as planning
engines for autonomous agents, demonstrating their ability to
generate coherent action sequences in domains ranging from
household robotics to software development [7]. The integration of
LLMs with external tools and knowledge bases through retrieval-
augmented generation (RAG) frameworks has substantially
expanded their planning capabilities by providing access to up-to-
date information and domain-specific expertise [8]. These hybrid
architectures combine the generative flexibility of LLMs with the
precision and reliability of structured knowledge systems, creating
more robust planning mechanisms.

Decision making in the context of LLMs encompasses both
individual task execution and collaborative human-machine
systems where models serve as advisors, analysts, or autonomous
agents. Research has investigated how LLMs can support medical
diagnosis by synthesizing patient information, suggesting
differential diagnoses, and recommending treatment pathways [9].
In financial domains, LLMs have been deployed for market
analysis, risk assessment, and investment strategy formulation,
demonstrating competitive performance with traditional analytical
models [10]. The ability of LLMs to process vast amounts of
unstructured text data, identify relevant patterns, and generate
actionable recommendations positions them as valuable decision
support tools across professional domains.
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Despite these impressive capabilities, significant challenges remain
before LLMs can be considered true general purpose intelligence
systems. Hallucination, the generation of plausible but factually
incorrect information, represents a critical limitation that
undermines reliability in high-stakes applications [11]. Reasoning
consistency varies substantially across problem formulations, with
models sometimes failing on simple variants of problems they
previously solved correctly. Computational costs associated with
training and inference limit accessibility and raise sustainability
concerns. Ethical considerations including bias amplification,
privacy violations, and potential misuse require careful governance
frameworks.

This review provides a comprehensive analysis of LLMs as
general purpose intelligence systems, focusing specifically on their
capabilities and limitations in reasoning, planning, and decision
making. We synthesize recent empirical findings, theoretical
frameworks, and practical applications to assess the current state of
LLM-based general intelligence. The review is organized into six
main sections beyond this introduction. The following section
presents a thorough literature review examining the evolution of
LLMs and their positioning within the broader AGI landscape. We
then analyze reasoning capabilities across multiple cognitive
domains, investigate planning mechanisms and multi-step task
execution, and explore decision-making frameworks with real-
world applications. Finally, we discuss critical challenges and
limitations before synthesizing key findings in the conclusion.

2. Literature Review

The conceptual foundations of general purpose intelligence in
artificial systems trace back to early Al research, where pioneers
envisioned machines capable of flexible problem-solving across
arbitrary domains without specialized programming. Classical
approaches to AGI emphasized symbolic reasoning, knowledge
representation, and explicit rule systems that could manipulate
abstract concepts according to logical principles [12]. These
systems demonstrated competence in constrained domains such as
chess playing and mathematical theorem proving but struggled
with the flexibility and robustness characteristic of human
intelligence. The knowledge acquisition bottleneck, wherein
manual encoding of domain expertise proved prohibitively labor-
intensive, limited the scalability of symbolic Al approaches.

The connectionist revolution introduced neural networks as an
alternative paradigm emphasizing distributed representations and
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learning from data rather than explicit programming [13]. Early
neural network architectures demonstrated impressive pattern
recognition capabilities but were limited by computational
resources, training algorithms, and data availability. The
development of backpropagation enabled efficient training of
multi-layer networks, while convolutional neural networks (CNNSs)
achieved breakthrough performance on visual recognition tasks
[14]. However, these systems remained largely specialized to
specific sensory modalities or task domains, falling short of the
flexibility required for general intelligence.

The introduction of the transformer architecture marked a pivotal
moment in the trajectory toward general purpose Al systems.
Unlike recurrent neural networks (RNNSs) that process sequences
step-by-step, transformers employ self-attention mechanisms that
enable parallel computation and direct modeling of long-range
dependencies. The attention mechanism computes weighted
combinations of input representations based on learned relevance
scores, allowing models to focus on pertinent information
regardless of sequential distance [15]. This architectural innovation
enabled training of substantially larger models on more extensive
datasets, leading to qualitative improvements in language
understanding and generation capabilities.

The scaling laws governing LLM performance have been
extensively studied, revealing predictable relationships between
model size, dataset size, computational budget, and downstream
task performance. Research has demonstrated that increasing any
of these factors while holding others constant leads to systematic
improvements, with optimal resource allocation depending on
specific deployment constraints [16]. These scaling laws suggest
that current architectural paradigms have not yet reached
fundamental  performance ceilings, implying  continued
improvement potential through increased scale. However, recent
work has questioned whether scaling alone is sufficient for
achieving general intelligence, highlighting persistent limitations
in causal reasoning, systematic generalization, and grounded
understanding [17].

Pre-training objectives play a crucial role in shaping LLM
capabilities and their potential for general intelligence. Masked
language modeling, used in models like BERT, trains systems to
predict missing tokens based on surrounding context, encouraging
bidirectional understanding of linguistic structure. Causal language
modeling, employed in GPT-series models, trains systems to
predict subsequent tokens given preceding context, optimizing for
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coherent text generation [18]. Recent research has explored
alternative pre-training objectives including contrastive learning,
denoising autoencoders, and multi-task learning that may better
align with general intelligence requirements. The choice of pre-
training objective influences the types of knowledge and
capabilities that emerge during training, with implications for
downstream reasoning and planning performance.

In-context learning represents a remarkable emergent capability of
large-scale models wherein they adapt to new tasks based solely on
examples provided in the input prompt without parameter updates.
This phenomenon suggests that LLMs develop internal
mechanisms for task identification, pattern recognition, and rule
inference during pre-training that generalize to novel situations
[19]. Research has investigated the relationship between model
scale and ICL performance, finding that this capability emerges
primarily in models exceeding certain parameter thresholds. The
mechanisms underlying ICL remain incompletely understood, with
competing theories emphasizing either implicit meta-learning
during pre-training or direct pattern matching against memorized
training examples.

Chain-of-thought prompting has emerged as a powerful technique
for enhancing reasoning capabilities by encouraging models to
articulate intermediate steps in problem-solving processes. Studies
have demonstrated that CoT prompting substantially improves
performance on mathematical reasoning, logical inference, and
multi-hop question answering tasks. The effectiveness of CoT
appears to depend on model scale, with larger models benefiting
more from explicit reasoning articulation [20]. Variations of CoT
including self-consistency methods, which sample multiple
reasoning paths and select the most consistent answer, have further
improved reliability. These prompting techniques represent a form
of soft programming that guides model behavior without
retraining, enabling rapid adaptation to diverse cognitive tasks.

Retrieval-augmented generation frameworks address fundamental
limitations of purely parametric models by integrating external
knowledge sources into the generation process. RAG systems
retrieve relevant documents from large corpora based on input
queries, then condition language generation on retrieved content
alongside the original prompt. This architecture combines the
generative flexibility of LLMs with the precision and updateability
of explicit knowledge bases, reducing hallucination while enabling
access to specialized or current information [21]. Research has
explored various retrieval strategies, indexing methods, and
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integration approaches that optimize the trade-off between
computational efficiency and knowledge coverage.

Multimodal LLMs extend language-centric architectures to process
and generate content across multiple modalities including vision,
audio, and structured data. These systems employ shared
representation spaces where different modalities are embedded into
common semantic spaces, enabling cross-modal reasoning and
generation [22]. Vision-language models have demonstrated
capabilities in image captioning, visual question answering, and
text-to-image generation that suggest unified understanding of
perceptual and linguistic information. The integration of multiple
modalities may be essential for achieving general intelligence, as
human cognition fundamentally operates across sensory domains
with rich cross-modal associations.

The development of LLM-based autonomous agents represents a
significant step toward operational general intelligence systems
that can interact with environments, execute tasks, and pursue
goals. These agents employ LLMs as reasoning engines that plan
actions, invoke tools, and adapt strategies based on environmental
feedback [23]. Research has demonstrated agent capabilities in
domains including web navigation, software development,
scientific experimentation, and household robotics. The agent
paradigm transforms LLMs from passive question-answering
systems into active problem-solvers that can decompose
objectives, execute sub-tasks, and integrate results toward goal
achievement.

Evaluation methodologies for general intelligence capabilities
remain a critical research challenge, as traditional NLP
benchmarks focus on narrow task performance rather than flexible
problem-solving. Recent work has proposed comprehensive
evaluation frameworks that assess multiple dimensions of
intelligence including reasoning, planning, learning, knowledge,
and robustness [24]. Benchmarks such as BIG-Bench, HELM, and
AGI Eval provide diverse task sets designed to probe general
capabilities rather than memorization of specific patterns.
However, concerns about benchmark contamination, where
training data includes test examples, complicate interpretation of
results and necessitate careful dataset curation.

Theoretical perspectives on whether LLMs can achieve genuine
understanding or merely simulate intelligence through statistical
pattern matching remain contentious. Some researchers argue that
the scale and architectural sophistication of modern LLMs enable
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emergent understanding that, while mechanistically different from
human cognition, constitutes a valid form of intelligence [25].
Alternative views maintain that LLMs lack grounded meaning,
causal models, and genuine intentionality required for
understanding, arguing that their success reflects exploitation of
statistical regularities rather than comprehension. This debate
carries implications for expectations regarding LLM capabilities,
appropriate application domains, and future research directions.

3. Reasoning Capabilities of Large Language Models

Reasoning encompasses the cognitive processes by which
intelligent systems derive new knowledge from existing
information through systematic inference, logical deduction,
pattern recognition, and analogical thinking. LLMs have
demonstrated reasoning capabilities across multiple domains that
were previously thought to require specialized symbolic systems or
extensive task-specific training. The emergence of these
capabilities from models trained primarily on next-token prediction
objectives has surprised many researchers and prompted intensive
investigation into the mechanisms underlying LLM reasoning.

Mathematical reasoning represents a particularly challenging
domain for neural models due to its requirement for precise
symbolic manipulation, multi-step derivation, and strict logical
consistency. Early language models struggled with even basic
arithmetic, frequently producing incorrect answers to simple
calculation problems. However, recent LLMs exhibit substantially
improved mathematical capabilities, successfully solving problems
from standardized tests, competition mathematics, and
undergraduate-level coursework [26]. The integration of CoT
prompting has been especially impactful for mathematical
reasoning, with models articulating step-by-step solutions that
mirror human problem-solving approaches. Research has shown
that encouraging models to show their work significantly improves
accuracy on word problems, algebraic manipulations, and
geometric proofs.

Despite these advances, mathematical reasoning in LLMs exhibits
systematic limitations and failure modes. Models sometimes make
calculation errors in intermediate steps even when the overall
solution strategy is correct [27]. Performance varies substantially
based on problem presentation format, with seemingly superficial
changes in wording or notation affecting success rates.
Furthermore, LLMs occasionally generate solutions that appear
mathematically sophisticated but contain subtle logical errors that
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undermine validity. These inconsistencies suggest that LLM
mathematical reasoning may rely partially on pattern matching
against similar problems seen during training rather than robust
symbolic manipulation capabilities.

Logical reasoning tasks assess the ability to derive valid
conclusions from premises according to formal inference rules.
LLMs have been evaluated on propositional logic, predicate logic,
and natural language inference tasks that require identifying
entailment relationships between statements [28]. Performance on
these tasks has improved with model scale, with larger models
more consistently applying logical rules and avoiding common
fallacies. Research has investigated whether LLMs develop
internal representations of logical structure or merely learn surface-
level patterns associated with valid inferences. Evidence suggests a
combination of both mechanisms, with models exhibiting some
systematic logical capabilities alongside reliance on linguistic
heuristics that can lead to errors.

Commonsense reasoning involves making plausible inferences
about everyday situations based on background knowledge about
physical causality, social conventions, and typical event sequences.
This capability is fundamental to human intelligence but has
proven remarkably difficult for Al systems due to the vast scope of
commonsense knowledge and its implicit, context-dependent
nature [29]. LLMs pre-trained on diverse web text acquire
substantial commonsense knowledge that enables reasonable
inferences about ordinary scenarios. Benchmarks assessing
commonsense reasoning, such as PIQA, HellaSwag, and
CommonsenseQA, show that modern LLMs approach or exceed
human performance on multiple-choice questions requiring
everyday knowledge. However, these results must be interpreted
cautiously given potential training data contamination and the
possibility that models exploit superficial linguistic cues rather
than genuine understanding.

Analogical reasoning, the capacity to identify structural similarities
between superficially dissimilar domains and transfer knowledge
accordingly, represents a hallmark of human creative thinking and
problem-solving. Research has explored whether LLMs can
perform analogical reasoning by solving problems in novel
domains based on examples from different contexts [30]. Studies
have demonstrated that LLMs can complete analogy tasks of the
form "A is to B as C is to what?" with reasonable accuracy,
especially when provided with explanatory context. More complex
relational reasoning tasks that require mapping multiple
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correspondences between source and target domains show mixed
results, with performance depending heavily on the familiarity and
complexity of the domains involved.

Causal  reasoning  involves  understanding  cause-effect
relationships, predicting intervention outcomes, and distinguishing
correlation from causation. This capability is essential for
planning, scientific reasoning, and decision-making under
uncertainty. LLMs trained on observational text data acquire
implicit causal knowledge that enables basic causal inference in
familiar domains [31]. However, research has shown that LLMs
struggle with tasks requiring explicit causal modeling,
counterfactual reasoning, or intervention prediction in novel
scenarios. The lack of grounding in physical experience and
inability to perform controlled experiments limits LLM causal
reasoning capabilities compared to systems that can interact with
environments.

Abductive reasoning, the process of inferring the most plausible
explanation for observed phenomena, has been investigated in
LLMs through narrative understanding and diagnostic reasoning
tasks. Models demonstrate reasonable ability to generate
explanations for events in stories, medical symptoms, or system
failures [32]. The quality of abductive inferences varies with the
richness of background knowledge in the domain, with better
performance in areas well-represented in training data. Research
has noted that LLMs sometimes generate multiple plausible but
mutually inconsistent explanations without recognizing the
contradictions, indicating limitations in maintaining coherent belief
states.

Spatial reasoning tasks requiring understanding of geometric
relationships, mental rotation, and navigation have proven
challenging for language-only models. Visual LLMs that process
both text and images show improved spatial reasoning capabilities
by grounding linguistic descriptions in visual representations [33].
However, even multimodal models struggle with complex spatial
reasoning tasks that humans solve readily, such as mental folding
of paper or three-dimensional object assembly. These limitations
highlight the importance of embodied experience and sensorimotor
grounding for certain forms of intelligence.

Temporal reasoning involves understanding event sequences,
duration relationships, and temporal constraints. LLMs
demonstrate basic temporal reasoning capabilities such as ordering
events based on linguistic cues and making plausible inferences
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about typical event durations. More complex temporal reasoning
tasks involving relative time references, temporal projection, or
scheduling problems show inconsistent performance [34]. The
sequential nature of language processing may provide some
advantages for temporal reasoning, but limitations in maintaining
precise temporal state representations affect reliability.

Comparative Performance of Large Language Models Across Diverse Reasoning Tasks
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Figure 1: Comparative performance of large language models
across diverse reasoning tasks.

The consistency and robustness of LLM reasoning remains an
active research concern. Studies have demonstrated that models
sometimes fail on simple instances of problem types they solve
correctly in more complex forms, violating expected difficulty
hierarchies. This brittleness suggests that LLM reasoning relies
partially on superficial pattern matching rather than robust
algorithmic procedures [35]. Adversarial examples, where minimal
perturbations to problem statements dramatically change model
responses, reveal brittleness in reasoning capabilities. The
sensitivity to prompt formatting, instruction phrasing, and example
selection indicates that current reasoning capabilities are not fully
general or reliable.

Self-refinement techniques, wherein models critique and improve
their own reasoning outputs through iterative generation, have
shown promise for enhancing reasoning quality. These approaches
leverage the model's ability to recognize errors in generated
reasoning chains and produce corrections [36]. Research has
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explored various self-refinement protocols including self-
consistency checking, critique-based revision, and multi-agent
debate frameworks. While these methods improve average
performance, they also increase computational costs and do not
eliminate fundamental reasoning limitations.

Figure 1 presents comparative performance across four reasoning
domains for major LLM architectures. Mathematical reasoning
shows the strongest performance, particularly with CoT prompting,
while causal reasoning exhibits the most significant limitations.
The data reveals consistent improvement with model scale across
all domains, with GPT-4 achieving highest accuracy. However, the
persistent gap between commonsense reasoning (approaching
human performance) and causal reasoning (substantially below)
highlights fundamental architectural limitations. These patterns
suggest that while LLMs acquire substantial reasoning capabilities
through scale, certain cognitive domains—particularly those
requiring grounded causal understanding—remain challenging
regardless of parameter count.

4. Planning and Multi-Step Problem Solving

Planning represents a crucial component of general intelligence,
involving the decomposition of high-level goals into executable
action sequences, consideration of action preconditions and effects,
and adaptation to environmental constraints. LLMs have
demonstrated unexpected planning capabilities despite being
trained primarily on static text prediction rather than interactive
decision-making. These capabilities emerge from the model's
ability to generate coherent multi-step narratives, simulate action
consequences through language, and leverage procedural
knowledge absorbed during pre-training.

Task decomposition, the process of breaking complex objectives
into manageable sub-goals, represents a fundamental planning skill
that LLMs exhibit across diverse domains. Research has shown
that when prompted with high-level instructions, LLMs can
generate reasonable task breakdowns that capture key
dependencies and ordering constraints [37]. For instance, given a
goal such as "prepare a research presentation,” models can
articulate sub-tasks including literature review, slide preparation,
rehearsal, and delivery. The quality of task decompositions
depends on domain familiarity, with better performance in areas
well-represented in training corpora.
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Hierarchical planning involves organizing actions into nested goal
structures where high-level objectives are achieved through
completion of intermediate sub-goals. LLMs demonstrate basic
hierarchical planning capabilities by generating action sequences at
multiple levels of abstraction. Research investigating LLM-based
planning for household robotics has shown that models can
produce hierarchical plans specifying both high-level task
sequences and low-level motor actions [38]. However, maintaining
consistency across hierarchical levels and ensuring that low-level
actions actually achieve high-level goals remains challenging.

Temporal planning requires reasoning about action durations,
scheduling constraints, and resource availability over time. LLMs
exhibit limited temporal planning capabilities, sometimes
generating action sequences that violate temporal constraints or
make unrealistic assumptions about concurrent execution. The lack
of explicit temporal reasoning mechanisms and difficulty
maintaining precise temporal state representations contribute to
these limitations [39]. Integration with external scheduling
algorithms or temporal constraint solvers has shown promise for
enhancing LLM temporal planning capabilities.

Conditional planning involves generating action sequences that
adapt to uncertain outcomes or alternative environmental states.
LLMs can express conditional plans through natural language
control flow, articulating contingency actions for different
scenarios [40]. Research has explored using LLMs to generate
decision trees or conditional execution graphs that specify different
action branches based on observation outcomes. The ability to
enumerate relevant contingencies and assign appropriate
probabilities remains limited, with models sometimes overlooking
important edge cases.

Planning under uncertainty requires balancing exploration and
exploitation, assessing action risks, and making decisions with
incomplete information. LLMs demonstrate basic probabilistic
reasoning  capabilities that enable simple uncertainty
quantification. However, rigorous planning under uncertainty
typically requires frameworks such as Markov decision processes
(MDPs) or partially observable MDPs that LLMs cannot directly
implement [41]. Hybrid approaches combining LLM high-level
reasoning with formal planning algorithms for low-level
optimization show promise.

Multi-agent planning scenarios where multiple actors coordinate
toward shared or competing goals present additional complexity.
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LLMs have been employed in simulations of multi-agent
interactions, generating reasonable behaviors for individual agents
while accounting for others' likely actions [42]. Research on LLM-
based game playing has demonstrated strategic reasoning
capabilities in competitive and cooperative scenarios. However,
the depth of strategic reasoning and theory of mind capabilities in
LLMs remains substantially limited compared to human planning
in social contexts.

Tool use represents a crucial extension of LLM planning
capabilities, enabling models to invoke external functions, access
databases, or execute code to accomplish tasks beyond pure
language generation. Recent research has developed frameworks
where LLMs plan sequences of tool invocations, passing outputs
from one tool as inputs to subsequent tools. These augmented
systems have demonstrated capabilities in data analysis, web
search, calculation, and code execution that substantially expand
planning domains. In distributed computing environments, graph
neural network-based approaches have shown that modeling task
dependencies as directed acyclic graphs combined with
reinforcement learning enables adaptive scheduling that responds
to dynamic system conditions, providing insights applicable to
LLM-based planning under resource constraints [43]. The
challenge lies in learning appropriate tool selection strategies and
robustly handling tool execution failures.

Replanning and plan adaptation in response to execution failures or
environmental changes represent important aspects of robust
planning systems. LLMs demonstrate limited online adaptation
capabilities, sometimes struggling to revise plans when initial
actions fail or conditions change. Research has explored
frameworks where LLMs monitor execution outcomes and
generate alternative plans when deviations are detected [44]. The
effectiveness of LLM replanning depends on the richness of
environmental feedback and the model's ability to diagnose failure
causes.
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LLM-Based Aut Agent Planning Cycle Architecture
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Figure 2: Architecture diagram illustrating the planning cycle for
LLM-based autonomous agents.

Goal inference from natural language instructions presents
challenges for LLM-based planning systems, as human instructions
often underspecify goals or contain implicit constraints. Research
has investigated techniques for clarifying ambiguous instructions
through interactive dialogue before plan generation [45]. The
ability to identify missing information and ask appropriate
clarification questions varies across domains and instruction
complexity.

Plan verification and validation ensure that generated plans satisfy
constraints and are likely to achieve intended goals. LLMs can
perform basic plan checking by simulating execution and verifying
precondition satisfaction. However, comprehensive formal
verification of plan correctness remains beyond current LLM
capabilities without integration with automated theorem provers
[46]. Research has explored using LLMSs to generate test cases or
invariants that characterize valid plans.

Learning from planning failures could enable LLMs to improve
planning capabilities over time through experience. Current LLMs
lack explicit memory systems that accumulate task-specific
planning knowledge across sessions. Approaches including
retrieval of similar past planning episodes and fine-tuning on
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successful plan examples have shown moderate improvements
[47]. The development of continual learning frameworks that
enable LLMs to refine planning strategies without catastrophic
forgetting represents an important research direction.

Figure 2 illustrates the iterative planning architecture enabling
LLM-based autonomous agents. The cycle begins with goal
specification, where natural language objectives are parsed into
actionable targets. Task decomposition leverages the LLM's ability
to generate hierarchical sub-goal structures. The action generation
component produces executable steps, which interface with
environments through tool APIs or simulation layers. Critically,
the feedback processing loop enables plan revision based on
execution outcomes, addressing a key limitation of open-loop
planning approaches. The memory system maintains state across
iterations, supporting coherent long-horizon planning. This
architecture underlies recent advances in code generation, web
navigation, and robotic task completion.

5. Decision Making and Real-World Applications

Decision making involves selecting actions from available
alternatives based on preferences, constraints, and predicted
outcomes. LLMs have been increasingly deployed as decision
support systems and autonomous decision-makers across
professional domains ranging from medicine to finance. The
capacity to process vast unstructured information, synthesize
multiple perspectives, and generate reasoned recommendations
positions LLMs as valuable tools for complex decision scenarios.
However, critical concerns regarding reliability, bias, and
accountability necessitate careful consideration of appropriate use
cases and deployment protocols.

Table 1 synthesizes LLM decision support capabilities across five
key application domains. Medical diagnosis achieves near-
physician accuracy on structured vignettes but faces hallucination
risks in clinical deployment. Financial analysis demonstrates
competitive returns in simulations while raising concerns about
adversarial manipulation. Legal research shows strong
performance on bar examinations but requires human oversight for
citation verification. Scientific research enables novel hypothesis
generation with laboratory automation integration. Education
applications provide personalized instruction with variable
effectiveness across subjects. Across domains, the pattern emerges
of strong benchmark performance coupled with deployment
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challenges related to reliability, explainability, and domain-specific
validation requirements.

Medical diagnosis and treatment recommendation represent high-
stakes decision domains where LLMs have shown promising but
uneven capabilities. Research has demonstrated that LLMs can
generate reasonable differential diagnoses from patient symptom
descriptions, often matching or approaching physician
performance on clinical vignettes [48]. The ability to synthesize
information from patient histories, laboratory results, and medical
literature enables comprehensive diagnostic reasoning. However,
studies have also identified concerning error patterns including
hallucinated medical facts, overlooked critical symptoms, and
recommendations inconsistent with clinical guidelines. The lack of
explicit uncertainty quantification and tendency toward
overconfidence pose particular risks in medical contexts.

Therapeutic decision support, where LLMs suggest treatment
options and consider patient-specific factors, has been explored
through both conversational interfaces and structured clinical
decision support systems. Models can articulate reasoning about
treatment trade-offs, potential side effects, and patient preference
alignment [49]. Integration with clinical knowledge bases and drug
interaction databases enhances safety and accuracy. Nonetheless,
the opacity of LLM decision processes and difficulty explaining
recommendations in terms of established medical reasoning
frameworks complicate clinical adoption.

Financial decision making including investment analysis, risk
assessment, and portfolio management has attracted significant
interest as an application domain for LLMs. Models have been
employed to analyze earnings reports, news sentiment, and market
trends to generate investment recommendations [50]. Research has
shown that LLM-generated trading strategies can achieve
competitive returns in simulated trading environments. The ability
to process qualitative information from diverse textual sources
complements traditional quantitative financial models. Related
work in supply chain forecasting has demonstrated that causal-
aware multimodal transformers can effectively integrate textual
sentiment, temporal patterns, and visual data while distinguishing
genuine causal relationships from spurious correlations, offering a
framework that could enhance LLM-based decision systems in
operational planning contexts [51]. However, the susceptibility to
market manipulation through adversarial inputs and unpredictable
responses to novel market conditions raise concerns about real-
world deployment.
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Credit risk assessment represents another financial application
where LLMs process loan applications, financial documents, and
alternative data sources to predict default probability. Studies have
explored whether LLM-based credit models reduce bias compared
to traditional scoring systems or inadvertently amplify
demographic disparities. The interpretability challenges associated
with LLM decisions complicate regulatory compliance in
jurisdictions requiring explainable lending decisions.

Legal decision support systems employing LLMs assist with case
research, contract analysis, and legal strategy formulation. Models
can identify relevant precedents, summarize case law, and suggest
legal arguments based on fact patterns [52]. Research has
investigated LLM performance on bar examination questions and
legal reasoning tasks, finding competitive performance with human
test-takers. However, the risk of hallucinated case citations and
mischaracterization of legal principles necessitates careful human
oversight.

Scientific research decision making including hypothesis
generation, experimental design, and literature synthesis represents
an emerging application area for LLMs. Models can propose
research directions by identifying gaps in existing literature and
suggesting novel combinations of established concepts [53].
Automated experimental design frameworks employ LLMs to
specify experimental parameters, predict outcomes, and
recommend next experiments based on prior results. Integration
with laboratory automation systems enables closed-loop scientific
discovery where LLMs direct experimental campaigns.

Education and personalized learning systems utilize LLMs for
curriculum design, content recommendation, and adaptive
instruction. Models can assess student understanding from written
responses, identify misconceptions, and generate tailored
explanations or practice problems [54]. Research has explored
LLM-based intelligent tutoring systems that engage students in
Socratic dialogue to guide learning. The effectiveness of these
systems compared to human instruction varies across subject
matter and student populations.
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Application Domains for LLM Decision Support Systems with Associated Capabilities, Performance Metrics, and Deployment Challenges

Competitive returns in simulated
trading

70-80% accuracy on bar exa
question:

Education

Table 1: Application domains for LLM decision support systems
with associated capabilities, performance metrics, and deployment
challenges.

Human resource decisions including candidate screening,
interview question generation, and performance evaluation have
been proposed as LLM applications. Models can analyze resumes,
assess candidate qualifications against job requirements, and
generate structured interview guides. However, concerns about
amplification of hiring biases, privacy violations, and
dehumanization of employment decisions have prompted calls for
strict limitations on automated HR systems [55].

Collaborative human-Al decision making frameworks attempt to
leverage complementary strengths of human judgment and
machine analysis. Research has investigated interaction protocols
where LLMs provide preliminary analyses that humans review and
refine [56]. The effectiveness of these collaborations depends on
appropriate division of responsibilities, transparency of Al
contributions, and mechanisms for human oversight. Studies have
shown that human reliance on Al recommendations can be either
insufficient, leading to underutilization of valuable insights, or
excessive, resulting in automation bias and acceptance of
erroneous suggestions.

Ethical decision making frameworks for LLMs address challenges
in aligning model behavior with human values across diverse
cultural contexts. Research has explored encoding ethical
principles such as utilitarianism, deontology, or virtue ethics into
decision-making prompts [57]. The difficulty of specifying
comprehensive value systems and handling value conflicts in
complex scenarios remains a fundamental challenge. Participatory
approaches involving diverse stakeholder input in defining
acceptable Al decision criteria show promise for improving value
alignment.
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Decision transparency and explainability represent critical
requirements for many applications, particularly in regulated
domains or high-stakes contexts. LLMs can generate natural
language explanations of their decisions, articulating the reasoning
process and key factors influencing recommendations [58].
However, these explanations may not accurately reflect the model's
actual  decision process, instead constituting  post-hoc
rationalizations. Research on mechanistic interpretability aims to
develop techniques for understanding genuine causal factors in
LLM decisions.

6. Challenges and Limitations

Despite remarkable progress in LLM capabilities across reasoning,
planning, and decision making, fundamental limitations constrain
their viability as general purpose intelligence systems.
Hallucination, the generation of fluent but factually incorrect
information, represents perhaps the most widely recognized
limitation. Models confidently assert false claims, fabricate
citations, and generate plausible but nonsensical explanations. The
mechanisms underlying hallucination likely involve both
knowledge gaps where models lack information and
representational confusion where models conflate similar concepts
[59]. Research has explored various mitigation strategies including
retrieval augmentation, uncertainty estimation, and adversarial
training, but no approach eliminates hallucination entirely.

Reasoning inconsistency manifests as variable performance across
problem instances that should be equivalently difficult based on
logical structure. Models may solve complex problems while
failing on simpler variants, violating expected difficulty
hierarchies. This brittleness suggests that LLM reasoning relies
partially on superficial pattern matching rather than robust
algorithmic procedures. Adversarial examples demonstrate how
minimal perturbations to problem statements can dramatically
affect model performance. The lack of guaranteed reasoning
soundness limits applicability in domains requiring high reliability.

Computational requirements for training and deploying LLMs
raise practical and environmental concerns. Training state-of-the-
art models requires thousands of specialized hardware accelerators
over extended periods, consuming substantial energy. The carbon
footprint of training large models has prompted calls for more
sustainable Al development practices [60]. Inference costs limit
deployment scalability, particularly for real-time applications or
resource-constrained  environments. Research on  model
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compression, efficient architectures, and knowledge distillation
aims to reduce computational demands while preserving
capabilities.

Data requirements for training general-purpose LLMs include
massive text corpora that raise copyright, privacy, and data
governance concerns. Web scraping practices that collect training
data may violate intellectual property rights or capture personal
information without consent. The composition of training corpora
influences model capabilities and biases, with underrepresented
perspectives and languages receiving less coverage. Curating high-
quality, diverse, and ethically sourced training data at the scale
required for competitive LLMs presents ongoing challenges.

Bias and fairness issues pervade LLM outputs, reflecting and
sometimes amplifying societal biases present in training data.
Models generate stereotypical associations, discriminatory content,
and demographically skewed predictions. Research has
documented bias across multiple dimensions including gender,
race, age, and nationality. Debiasing techniques including filtered
training data, adversarial training, and output post-processing show
partial effectiveness but do not eliminate bias entirely. The
interaction between multiple bias dimensions and context-
dependent manifestations complicates bias mitigation.

Safety and alignment challenges arise from potential misuse of
LLMs for generating misinformation, malicious code, or
manipulative content. Ensuring that LLMs behave in accordance
with human values and societal norms across diverse contexts
remains an unsolved problem. Techniques such as reinforcement
learning from human feedback (RLHF) have improved alignment
but do not guarantee safe behavior in all scenarios. The difficulty
of specifying complete and consistent value systems, combined
with the challenge of robustly implementing such systems in large
neural networks, presents ongoing research challenges.

6. Conclusion

This comprehensive review has examined LLMs as general
purpose intelligence systems through the lens of three fundamental
cognitive capabilities: reasoning, planning, and decision making.
The analysis reveals that contemporary LLMs demonstrate
remarkable and often unexpected competencies across diverse
intellectual tasks that were traditionally thought to require
specialized systems or extensive domain-specific training. The
transformer architecture combined with massive-scale pre-training
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has produced models capable of sophisticated language
understanding, multi-step problem solving, and complex decision
support that approach or exceed human performance on numerous
benchmarks.

In the domain of reasoning, LLMs exhibit substantial capabilities
in mathematical problem-solving, logical inference, commonsense
reasoning, and analogical thinking. CoT prompting and ICL have
emerged as powerful techniques that unlock latent reasoning
abilities without requiring model retraining. However, systematic
inconsistencies, sensitivity to problem framing, and limitations in
causal understanding reveal that these reasoning capabilities, while
impressive, remain brittle and unreliable compared to human
cognitive flexibility. The extent to which LLMs develop genuine
understanding versus sophisticated pattern matching continues to
be debated, with implications for appropriate application domains
and future development directions.

Planning and multi-step problem-solving capabilities in LLMs
enable task decomposition, hierarchical goal structuring, and basic
temporal reasoning. The integration of LLMs with external tools
through RAG frameworks and autonomous agent architectures
substantially expands their operational capabilities. Yet challenges
in maintaining plan consistency, adapting to unexpected failures,
and reasoning under uncertainty indicate that current planning
mechanisms fall short of the robustness required for fully
autonomous operation in complex real-world environments.
Hybrid approaches combining LLM flexibility with formal
planning algorithms show promise but require further
development.

Decision-making applications across medicine, finance, law,
science, and education demonstrate the practical value of LLMs as
decision support tools. Their ability to synthesize vast amounts of
unstructured information and generate reasoned recommendations
provides genuine utility for human decision-makers. However,
issues including hallucination, bias amplification, lack of
transparency, and uncertain reliability necessitate careful human
oversight and limit applicability in high-stakes contexts.
Collaborative human-Al frameworks that leverage complementary
strengths while maintaining human agency and accountability
represent the most prudent near-term deployment strategy.

Fundamental challenges including computational costs, data

requirements, reasoning inconsistency, and alignment difficulties
constrain the trajectory toward general purpose intelligence. While
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scaling has driven substantial capability improvements, questions
remain about whether current architectures and training paradigms
can overcome inherent limitations in causal understanding,
grounded meaning, and systematic generalization. Future research
directions include developing more efficient architectures,
improving  reasoning  robustness  through  neurosymbolic
integration, enhancing transparency through  mechanistic
interpretability, and advancing alignment techniques to ensure safe
and beneficial Al systems.

The question of whether LLMs represent a path toward AGI or
merely sophisticated statistical pattern matchers remains
unresolved. Evidence suggests a nuanced reality where these
systems exhibit genuine intellectual capabilities that constitute a
valid form of machine intelligence, while simultaneously lacking
aspects of understanding and flexibility that characterize human
cognition. Rather than viewing LLMs as either fully intelligent or
merely mimicking intelligence, a more productive perspective
recognizes them as powerful computational tools with distinctive
strengths and limitations that differ from human cognitive
architecture.

Looking forward, the continued development of LLMs will likely
focus on addressing current limitations through architectural
innovations, improved training methodologies, and tighter
integration with symbolic reasoning systems and external
knowledge sources. The emergence of multimodal models,
advances in continual learning, and development of more
sophisticated evaluation frameworks will provide deeper insights
into the capabilities and boundaries of this approach to artificial
intelligence. Whether LLMs ultimately prove to be a stepping
stone toward AGI or a powerful but fundamentally limited
technology, their impact on Al research and practical applications
has been transformative and will continue to shape the field for
years to come.
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