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Abstract: The emergence of large language models (LLMs) has 

fundamentally transformed artificial intelligence (AI) research and 

applications, positioning these systems as potential candidates for 

general purpose intelligence. Large language models are deep 

neural networks trained on massive text corpora that demonstrate 

remarkable capabilities across diverse cognitive tasks without 

task-specific fine-tuning. This review examines how LLMs function 

as general intelligence systems, with particular emphasis on three 

core cognitive domains: reasoning, planning, and decision making. 

We analyze the architectural foundations that enable LLMs to 

perform complex reasoning tasks, including chain-of-thought 

prompting (CoT), in-context learning (ICL), and emergent abilities 

that arise from scale. The planning capabilities of LLMs are 

evaluated through their performance on multi-step problem 

decomposition, goal-oriented task completion, and strategic action 

sequencing. Furthermore, we investigate decision-making 

frameworks where LLMs serve as autonomous agents, policy 

advisors, and collaborative systems that integrate human expertise 

with machine intelligence. The review synthesizes recent advances 

in prompt engineering, retrieval-augmented generation (RAG), and 

multimodal integration that enhance LLM capabilities for general 

intelligence tasks. We examine real-world applications spanning 

healthcare diagnosis, financial analysis, scientific discovery, and 

autonomous systems management. Critical challenges including 

hallucination, reasoning consistency, computational efficiency, and 

ethical considerations are thoroughly discussed. This 
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comprehensive analysis demonstrates that while LLMs exhibit 

significant progress toward general purpose intelligence, 

fundamental limitations in causal understanding, long-term 

planning coherence, and adaptive learning remain open research 

challenges that require continued innovation in architecture 

design, training methodologies, and evaluation frameworks. 

Keywords: Large language models, general purpose intelligence, 

reasoning systems, planning algorithms, decision making, artificial 

intelligence, cognitive capabilities, chain-of-thought, in-context 

learning, prompt engineering 

INTRODUCTION 

The pursuit of artificial general intelligence (AGI) has been a 

central aspiration of artificial intelligence (AI) research since the 

field's inception, representing the goal of creating systems that can 

match or exceed human cognitive capabilities across diverse 

domains. Recent advances in large language models (LLMs) have 

catalyzed renewed optimism and intense debate regarding the 

feasibility of achieving general purpose intelligence through scaled 

neural architectures. Large language models, exemplified by 

systems such as Generative Pre-trained Transformer (GPT) series, 

PaLM, Claude, and LLaMA, have demonstrated unprecedented 

capabilities in natural language processing (NLP) tasks while 

exhibiting emergent behaviors that extend far beyond their initial 

training objectives [1]. These systems, trained on trillions of tokens 

from diverse text sources, have shown remarkable proficiency in 

tasks requiring reasoning, planning, and decision making—

cognitive functions traditionally considered hallmarks of human 

intelligence. 

The transformer architecture provides the foundational framework 

for modern LLMs through its self-attention mechanism that 

enables parallel processing of sequential data and long-range 

dependency modeling [2]. The scaling hypothesis, which posits 

that increasing model parameters, training data, and computational 

resources leads to qualitative improvements in capabilities, has 

been empirically validated across multiple dimensions of 

performance [3]. Models with billions to trillions of parameters 

have exhibited abilities that were absent in smaller counterparts, 

including in-context learning (ICL) where models adapt to new 

tasks from examples provided in the prompt without parameter 

updates [4]. This emergent capability suggests that LLMs may 

possess latent general intelligence that manifests when sufficient 

scale is achieved. 
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Reasoning represents a fundamental cognitive capability that 

distinguishes intelligent systems from simple pattern matchers. 

LLMs have demonstrated various reasoning modalities including 

logical inference, mathematical problem-solving, commonsense 

reasoning, and analogical thinking [5]. The introduction of chain-

of-thought (CoT) prompting techniques, which encourage models 

to articulate intermediate reasoning steps, has significantly 

enhanced performance on complex reasoning tasks [6]. Studies 

have shown that CoT prompting enables LLMs to solve multi-hop 

reasoning problems that require synthesizing information across 

multiple sources and performing sequential logical operations. 

However, the extent to which these reasoning capabilities reflect 

genuine understanding versus sophisticated pattern matching 

remains a subject of ongoing investigation and debate within the 

research community. 

Planning involves the decomposition of complex goals into 

actionable sequences of steps, temporal reasoning about action 

consequences, and adaptive strategy formulation in dynamic 

environments. Recent research has explored LLMs as planning 

engines for autonomous agents, demonstrating their ability to 

generate coherent action sequences in domains ranging from 

household robotics to software development [7]. The integration of 

LLMs with external tools and knowledge bases through retrieval-

augmented generation (RAG) frameworks has substantially 

expanded their planning capabilities by providing access to up-to-

date information and domain-specific expertise [8]. These hybrid 

architectures combine the generative flexibility of LLMs with the 

precision and reliability of structured knowledge systems, creating 

more robust planning mechanisms. 

Decision making in the context of LLMs encompasses both 

individual task execution and collaborative human-machine 

systems where models serve as advisors, analysts, or autonomous 

agents. Research has investigated how LLMs can support medical 

diagnosis by synthesizing patient information, suggesting 

differential diagnoses, and recommending treatment pathways [9]. 

In financial domains, LLMs have been deployed for market 

analysis, risk assessment, and investment strategy formulation, 

demonstrating competitive performance with traditional analytical 

models [10]. The ability of LLMs to process vast amounts of 

unstructured text data, identify relevant patterns, and generate 

actionable recommendations positions them as valuable decision 

support tools across professional domains. 
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Despite these impressive capabilities, significant challenges remain 

before LLMs can be considered true general purpose intelligence 

systems. Hallucination, the generation of plausible but factually 

incorrect information, represents a critical limitation that 

undermines reliability in high-stakes applications [11]. Reasoning 

consistency varies substantially across problem formulations, with 

models sometimes failing on simple variants of problems they 

previously solved correctly. Computational costs associated with 

training and inference limit accessibility and raise sustainability 

concerns. Ethical considerations including bias amplification, 

privacy violations, and potential misuse require careful governance 

frameworks. 

This review provides a comprehensive analysis of LLMs as 

general purpose intelligence systems, focusing specifically on their 

capabilities and limitations in reasoning, planning, and decision 

making. We synthesize recent empirical findings, theoretical 

frameworks, and practical applications to assess the current state of 

LLM-based general intelligence. The review is organized into six 

main sections beyond this introduction. The following section 

presents a thorough literature review examining the evolution of 

LLMs and their positioning within the broader AGI landscape. We 

then analyze reasoning capabilities across multiple cognitive 

domains, investigate planning mechanisms and multi-step task 

execution, and explore decision-making frameworks with real-

world applications. Finally, we discuss critical challenges and 

limitations before synthesizing key findings in the conclusion. 

2. Literature Review 

The conceptual foundations of general purpose intelligence in 

artificial systems trace back to early AI research, where pioneers 

envisioned machines capable of flexible problem-solving across 

arbitrary domains without specialized programming. Classical 

approaches to AGI emphasized symbolic reasoning, knowledge 

representation, and explicit rule systems that could manipulate 

abstract concepts according to logical principles [12]. These 

systems demonstrated competence in constrained domains such as 

chess playing and mathematical theorem proving but struggled 

with the flexibility and robustness characteristic of human 

intelligence. The knowledge acquisition bottleneck, wherein 

manual encoding of domain expertise proved prohibitively labor-

intensive, limited the scalability of symbolic AI approaches. 

The connectionist revolution introduced neural networks as an 

alternative paradigm emphasizing distributed representations and 
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learning from data rather than explicit programming [13]. Early 

neural network architectures demonstrated impressive pattern 

recognition capabilities but were limited by computational 

resources, training algorithms, and data availability. The 

development of backpropagation enabled efficient training of 

multi-layer networks, while convolutional neural networks (CNNs) 

achieved breakthrough performance on visual recognition tasks 

[14]. However, these systems remained largely specialized to 

specific sensory modalities or task domains, falling short of the 

flexibility required for general intelligence. 

The introduction of the transformer architecture marked a pivotal 

moment in the trajectory toward general purpose AI systems. 

Unlike recurrent neural networks (RNNs) that process sequences 

step-by-step, transformers employ self-attention mechanisms that 

enable parallel computation and direct modeling of long-range 

dependencies. The attention mechanism computes weighted 

combinations of input representations based on learned relevance 

scores, allowing models to focus on pertinent information 

regardless of sequential distance [15]. This architectural innovation 

enabled training of substantially larger models on more extensive 

datasets, leading to qualitative improvements in language 

understanding and generation capabilities. 

The scaling laws governing LLM performance have been 

extensively studied, revealing predictable relationships between 

model size, dataset size, computational budget, and downstream 

task performance. Research has demonstrated that increasing any 

of these factors while holding others constant leads to systematic 

improvements, with optimal resource allocation depending on 

specific deployment constraints [16]. These scaling laws suggest 

that current architectural paradigms have not yet reached 

fundamental performance ceilings, implying continued 

improvement potential through increased scale. However, recent 

work has questioned whether scaling alone is sufficient for 

achieving general intelligence, highlighting persistent limitations 

in causal reasoning, systematic generalization, and grounded 

understanding [17]. 

Pre-training objectives play a crucial role in shaping LLM 

capabilities and their potential for general intelligence. Masked 

language modeling, used in models like BERT, trains systems to 

predict missing tokens based on surrounding context, encouraging 

bidirectional understanding of linguistic structure. Causal language 

modeling, employed in GPT-series models, trains systems to 

predict subsequent tokens given preceding context, optimizing for 
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coherent text generation [18]. Recent research has explored 

alternative pre-training objectives including contrastive learning, 

denoising autoencoders, and multi-task learning that may better 

align with general intelligence requirements. The choice of pre-

training objective influences the types of knowledge and 

capabilities that emerge during training, with implications for 

downstream reasoning and planning performance. 

In-context learning represents a remarkable emergent capability of 

large-scale models wherein they adapt to new tasks based solely on 

examples provided in the input prompt without parameter updates. 

This phenomenon suggests that LLMs develop internal 

mechanisms for task identification, pattern recognition, and rule 

inference during pre-training that generalize to novel situations 

[19]. Research has investigated the relationship between model 

scale and ICL performance, finding that this capability emerges 

primarily in models exceeding certain parameter thresholds. The 

mechanisms underlying ICL remain incompletely understood, with 

competing theories emphasizing either implicit meta-learning 

during pre-training or direct pattern matching against memorized 

training examples. 

Chain-of-thought prompting has emerged as a powerful technique 

for enhancing reasoning capabilities by encouraging models to 

articulate intermediate steps in problem-solving processes. Studies 

have demonstrated that CoT prompting substantially improves 

performance on mathematical reasoning, logical inference, and 

multi-hop question answering tasks. The effectiveness of CoT 

appears to depend on model scale, with larger models benefiting 

more from explicit reasoning articulation [20]. Variations of CoT 

including self-consistency methods, which sample multiple 

reasoning paths and select the most consistent answer, have further 

improved reliability. These prompting techniques represent a form 

of soft programming that guides model behavior without 

retraining, enabling rapid adaptation to diverse cognitive tasks. 

Retrieval-augmented generation frameworks address fundamental 

limitations of purely parametric models by integrating external 

knowledge sources into the generation process. RAG systems 

retrieve relevant documents from large corpora based on input 

queries, then condition language generation on retrieved content 

alongside the original prompt. This architecture combines the 

generative flexibility of LLMs with the precision and updateability 

of explicit knowledge bases, reducing hallucination while enabling 

access to specialized or current information [21]. Research has 

explored various retrieval strategies, indexing methods, and 
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integration approaches that optimize the trade-off between 

computational efficiency and knowledge coverage. 

Multimodal LLMs extend language-centric architectures to process 

and generate content across multiple modalities including vision, 

audio, and structured data. These systems employ shared 

representation spaces where different modalities are embedded into 

common semantic spaces, enabling cross-modal reasoning and 

generation [22]. Vision-language models have demonstrated 

capabilities in image captioning, visual question answering, and 

text-to-image generation that suggest unified understanding of 

perceptual and linguistic information. The integration of multiple 

modalities may be essential for achieving general intelligence, as 

human cognition fundamentally operates across sensory domains 

with rich cross-modal associations. 

The development of LLM-based autonomous agents represents a 

significant step toward operational general intelligence systems 

that can interact with environments, execute tasks, and pursue 

goals. These agents employ LLMs as reasoning engines that plan 

actions, invoke tools, and adapt strategies based on environmental 

feedback [23]. Research has demonstrated agent capabilities in 

domains including web navigation, software development, 

scientific experimentation, and household robotics. The agent 

paradigm transforms LLMs from passive question-answering 

systems into active problem-solvers that can decompose 

objectives, execute sub-tasks, and integrate results toward goal 

achievement. 

Evaluation methodologies for general intelligence capabilities 

remain a critical research challenge, as traditional NLP 

benchmarks focus on narrow task performance rather than flexible 

problem-solving. Recent work has proposed comprehensive 

evaluation frameworks that assess multiple dimensions of 

intelligence including reasoning, planning, learning, knowledge, 

and robustness [24]. Benchmarks such as BIG-Bench, HELM, and 

AGI Eval provide diverse task sets designed to probe general 

capabilities rather than memorization of specific patterns. 

However, concerns about benchmark contamination, where 

training data includes test examples, complicate interpretation of 

results and necessitate careful dataset curation. 

Theoretical perspectives on whether LLMs can achieve genuine 

understanding or merely simulate intelligence through statistical 

pattern matching remain contentious. Some researchers argue that 

the scale and architectural sophistication of modern LLMs enable 
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emergent understanding that, while mechanistically different from 

human cognition, constitutes a valid form of intelligence [25]. 

Alternative views maintain that LLMs lack grounded meaning, 

causal models, and genuine intentionality required for 

understanding, arguing that their success reflects exploitation of 

statistical regularities rather than comprehension. This debate 

carries implications for expectations regarding LLM capabilities, 

appropriate application domains, and future research directions. 

3. Reasoning Capabilities of Large Language Models 

Reasoning encompasses the cognitive processes by which 

intelligent systems derive new knowledge from existing 

information through systematic inference, logical deduction, 

pattern recognition, and analogical thinking. LLMs have 

demonstrated reasoning capabilities across multiple domains that 

were previously thought to require specialized symbolic systems or 

extensive task-specific training. The emergence of these 

capabilities from models trained primarily on next-token prediction 

objectives has surprised many researchers and prompted intensive 

investigation into the mechanisms underlying LLM reasoning. 

Mathematical reasoning represents a particularly challenging 

domain for neural models due to its requirement for precise 

symbolic manipulation, multi-step derivation, and strict logical 

consistency. Early language models struggled with even basic 

arithmetic, frequently producing incorrect answers to simple 

calculation problems. However, recent LLMs exhibit substantially 

improved mathematical capabilities, successfully solving problems 

from standardized tests, competition mathematics, and 

undergraduate-level coursework [26]. The integration of CoT 

prompting has been especially impactful for mathematical 

reasoning, with models articulating step-by-step solutions that 

mirror human problem-solving approaches. Research has shown 

that encouraging models to show their work significantly improves 

accuracy on word problems, algebraic manipulations, and 

geometric proofs. 

Despite these advances, mathematical reasoning in LLMs exhibits 

systematic limitations and failure modes. Models sometimes make 

calculation errors in intermediate steps even when the overall 

solution strategy is correct [27]. Performance varies substantially 

based on problem presentation format, with seemingly superficial 

changes in wording or notation affecting success rates. 

Furthermore, LLMs occasionally generate solutions that appear 

mathematically sophisticated but contain subtle logical errors that 
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undermine validity. These inconsistencies suggest that LLM 

mathematical reasoning may rely partially on pattern matching 

against similar problems seen during training rather than robust 

symbolic manipulation capabilities. 

Logical reasoning tasks assess the ability to derive valid 

conclusions from premises according to formal inference rules. 

LLMs have been evaluated on propositional logic, predicate logic, 

and natural language inference tasks that require identifying 

entailment relationships between statements [28]. Performance on 

these tasks has improved with model scale, with larger models 

more consistently applying logical rules and avoiding common 

fallacies. Research has investigated whether LLMs develop 

internal representations of logical structure or merely learn surface-

level patterns associated with valid inferences. Evidence suggests a 

combination of both mechanisms, with models exhibiting some 

systematic logical capabilities alongside reliance on linguistic 

heuristics that can lead to errors. 

Commonsense reasoning involves making plausible inferences 

about everyday situations based on background knowledge about 

physical causality, social conventions, and typical event sequences. 

This capability is fundamental to human intelligence but has 

proven remarkably difficult for AI systems due to the vast scope of 

commonsense knowledge and its implicit, context-dependent 

nature [29]. LLMs pre-trained on diverse web text acquire 

substantial commonsense knowledge that enables reasonable 

inferences about ordinary scenarios. Benchmarks assessing 

commonsense reasoning, such as PIQA, HellaSwag, and 

CommonsenseQA, show that modern LLMs approach or exceed 

human performance on multiple-choice questions requiring 

everyday knowledge. However, these results must be interpreted 

cautiously given potential training data contamination and the 

possibility that models exploit superficial linguistic cues rather 

than genuine understanding. 

Analogical reasoning, the capacity to identify structural similarities 

between superficially dissimilar domains and transfer knowledge 

accordingly, represents a hallmark of human creative thinking and 

problem-solving. Research has explored whether LLMs can 

perform analogical reasoning by solving problems in novel 

domains based on examples from different contexts [30]. Studies 

have demonstrated that LLMs can complete analogy tasks of the 

form "A is to B as C is to what?" with reasonable accuracy, 

especially when provided with explanatory context. More complex 

relational reasoning tasks that require mapping multiple 
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correspondences between source and target domains show mixed 

results, with performance depending heavily on the familiarity and 

complexity of the domains involved. 

Causal reasoning involves understanding cause-effect 

relationships, predicting intervention outcomes, and distinguishing 

correlation from causation. This capability is essential for 

planning, scientific reasoning, and decision-making under 

uncertainty. LLMs trained on observational text data acquire 

implicit causal knowledge that enables basic causal inference in 

familiar domains [31]. However, research has shown that LLMs 

struggle with tasks requiring explicit causal modeling, 

counterfactual reasoning, or intervention prediction in novel 

scenarios. The lack of grounding in physical experience and 

inability to perform controlled experiments limits LLM causal 

reasoning capabilities compared to systems that can interact with 

environments. 

Abductive reasoning, the process of inferring the most plausible 

explanation for observed phenomena, has been investigated in 

LLMs through narrative understanding and diagnostic reasoning 

tasks. Models demonstrate reasonable ability to generate 

explanations for events in stories, medical symptoms, or system 

failures [32]. The quality of abductive inferences varies with the 

richness of background knowledge in the domain, with better 

performance in areas well-represented in training data. Research 

has noted that LLMs sometimes generate multiple plausible but 

mutually inconsistent explanations without recognizing the 

contradictions, indicating limitations in maintaining coherent belief 

states. 

Spatial reasoning tasks requiring understanding of geometric 

relationships, mental rotation, and navigation have proven 

challenging for language-only models. Visual LLMs that process 

both text and images show improved spatial reasoning capabilities 

by grounding linguistic descriptions in visual representations [33]. 

However, even multimodal models struggle with complex spatial 

reasoning tasks that humans solve readily, such as mental folding 

of paper or three-dimensional object assembly. These limitations 

highlight the importance of embodied experience and sensorimotor 

grounding for certain forms of intelligence. 

Temporal reasoning involves understanding event sequences, 

duration relationships, and temporal constraints. LLMs 

demonstrate basic temporal reasoning capabilities such as ordering 

events based on linguistic cues and making plausible inferences 
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about typical event durations. More complex temporal reasoning 

tasks involving relative time references, temporal projection, or 

scheduling problems show inconsistent performance [34]. The 

sequential nature of language processing may provide some 

advantages for temporal reasoning, but limitations in maintaining 

precise temporal state representations affect reliability. 

 

Figure 1: Comparative performance of large language models 

across diverse reasoning tasks. 

The consistency and robustness of LLM reasoning remains an 

active research concern. Studies have demonstrated that models 

sometimes fail on simple instances of problem types they solve 

correctly in more complex forms, violating expected difficulty 

hierarchies. This brittleness suggests that LLM reasoning relies 

partially on superficial pattern matching rather than robust 

algorithmic procedures [35]. Adversarial examples, where minimal 

perturbations to problem statements dramatically change model 

responses, reveal brittleness in reasoning capabilities. The 

sensitivity to prompt formatting, instruction phrasing, and example 

selection indicates that current reasoning capabilities are not fully 

general or reliable. 

Self-refinement techniques, wherein models critique and improve 

their own reasoning outputs through iterative generation, have 

shown promise for enhancing reasoning quality. These approaches 

leverage the model's ability to recognize errors in generated 

reasoning chains and produce corrections [36]. Research has 
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explored various self-refinement protocols including self-

consistency checking, critique-based revision, and multi-agent 

debate frameworks. While these methods improve average 

performance, they also increase computational costs and do not 

eliminate fundamental reasoning limitations. 

Figure 1 presents comparative performance across four reasoning 

domains for major LLM architectures. Mathematical reasoning 

shows the strongest performance, particularly with CoT prompting, 

while causal reasoning exhibits the most significant limitations. 

The data reveals consistent improvement with model scale across 

all domains, with GPT-4 achieving highest accuracy. However, the 

persistent gap between commonsense reasoning (approaching 

human performance) and causal reasoning (substantially below) 

highlights fundamental architectural limitations. These patterns 

suggest that while LLMs acquire substantial reasoning capabilities 

through scale, certain cognitive domains—particularly those 

requiring grounded causal understanding—remain challenging 

regardless of parameter count. 

4. Planning and Multi-Step Problem Solving 

Planning represents a crucial component of general intelligence, 

involving the decomposition of high-level goals into executable 

action sequences, consideration of action preconditions and effects, 

and adaptation to environmental constraints. LLMs have 

demonstrated unexpected planning capabilities despite being 

trained primarily on static text prediction rather than interactive 

decision-making. These capabilities emerge from the model's 

ability to generate coherent multi-step narratives, simulate action 

consequences through language, and leverage procedural 

knowledge absorbed during pre-training. 

Task decomposition, the process of breaking complex objectives 

into manageable sub-goals, represents a fundamental planning skill 

that LLMs exhibit across diverse domains. Research has shown 

that when prompted with high-level instructions, LLMs can 

generate reasonable task breakdowns that capture key 

dependencies and ordering constraints [37]. For instance, given a 

goal such as "prepare a research presentation," models can 

articulate sub-tasks including literature review, slide preparation, 

rehearsal, and delivery. The quality of task decompositions 

depends on domain familiarity, with better performance in areas 

well-represented in training corpora. 
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Hierarchical planning involves organizing actions into nested goal 

structures where high-level objectives are achieved through 

completion of intermediate sub-goals. LLMs demonstrate basic 

hierarchical planning capabilities by generating action sequences at 

multiple levels of abstraction. Research investigating LLM-based 

planning for household robotics has shown that models can 

produce hierarchical plans specifying both high-level task 

sequences and low-level motor actions [38]. However, maintaining 

consistency across hierarchical levels and ensuring that low-level 

actions actually achieve high-level goals remains challenging. 

Temporal planning requires reasoning about action durations, 

scheduling constraints, and resource availability over time. LLMs 

exhibit limited temporal planning capabilities, sometimes 

generating action sequences that violate temporal constraints or 

make unrealistic assumptions about concurrent execution. The lack 

of explicit temporal reasoning mechanisms and difficulty 

maintaining precise temporal state representations contribute to 

these limitations [39]. Integration with external scheduling 

algorithms or temporal constraint solvers has shown promise for 

enhancing LLM temporal planning capabilities. 

Conditional planning involves generating action sequences that 

adapt to uncertain outcomes or alternative environmental states. 

LLMs can express conditional plans through natural language 

control flow, articulating contingency actions for different 

scenarios [40]. Research has explored using LLMs to generate 

decision trees or conditional execution graphs that specify different 

action branches based on observation outcomes. The ability to 

enumerate relevant contingencies and assign appropriate 

probabilities remains limited, with models sometimes overlooking 

important edge cases. 

Planning under uncertainty requires balancing exploration and 

exploitation, assessing action risks, and making decisions with 

incomplete information. LLMs demonstrate basic probabilistic 

reasoning capabilities that enable simple uncertainty 

quantification. However, rigorous planning under uncertainty 

typically requires frameworks such as Markov decision processes 

(MDPs) or partially observable MDPs that LLMs cannot directly 

implement [41]. Hybrid approaches combining LLM high-level 

reasoning with formal planning algorithms for low-level 

optimization show promise. 

Multi-agent planning scenarios where multiple actors coordinate 

toward shared or competing goals present additional complexity. 
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LLMs have been employed in simulations of multi-agent 

interactions, generating reasonable behaviors for individual agents 

while accounting for others' likely actions [42]. Research on LLM-

based game playing has demonstrated strategic reasoning 

capabilities in competitive and cooperative scenarios. However, 

the depth of strategic reasoning and theory of mind capabilities in 

LLMs remains substantially limited compared to human planning 

in social contexts. 

Tool use represents a crucial extension of LLM planning 

capabilities, enabling models to invoke external functions, access 

databases, or execute code to accomplish tasks beyond pure 

language generation. Recent research has developed frameworks 

where LLMs plan sequences of tool invocations, passing outputs 

from one tool as inputs to subsequent tools. These augmented 

systems have demonstrated capabilities in data analysis, web 

search, calculation, and code execution that substantially expand 

planning domains. In distributed computing environments, graph 

neural network-based approaches have shown that modeling task 

dependencies as directed acyclic graphs combined with 

reinforcement learning enables adaptive scheduling that responds 

to dynamic system conditions, providing insights applicable to 

LLM-based planning under resource constraints [43]. The 

challenge lies in learning appropriate tool selection strategies and 

robustly handling tool execution failures. 

Replanning and plan adaptation in response to execution failures or 

environmental changes represent important aspects of robust 

planning systems. LLMs demonstrate limited online adaptation 

capabilities, sometimes struggling to revise plans when initial 

actions fail or conditions change. Research has explored 

frameworks where LLMs monitor execution outcomes and 

generate alternative plans when deviations are detected [44]. The 

effectiveness of LLM replanning depends on the richness of 

environmental feedback and the model's ability to diagnose failure 

causes. 
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Figure 2: Architecture diagram illustrating the planning cycle for 

LLM-based autonomous agents. 

Goal inference from natural language instructions presents 

challenges for LLM-based planning systems, as human instructions 

often underspecify goals or contain implicit constraints. Research 

has investigated techniques for clarifying ambiguous instructions 

through interactive dialogue before plan generation [45]. The 

ability to identify missing information and ask appropriate 

clarification questions varies across domains and instruction 

complexity. 

Plan verification and validation ensure that generated plans satisfy 

constraints and are likely to achieve intended goals. LLMs can 

perform basic plan checking by simulating execution and verifying 

precondition satisfaction. However, comprehensive formal 

verification of plan correctness remains beyond current LLM 

capabilities without integration with automated theorem provers 

[46]. Research has explored using LLMs to generate test cases or 

invariants that characterize valid plans. 

Learning from planning failures could enable LLMs to improve 

planning capabilities over time through experience. Current LLMs 

lack explicit memory systems that accumulate task-specific 

planning knowledge across sessions. Approaches including 

retrieval of similar past planning episodes and fine-tuning on 
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successful plan examples have shown moderate improvements 

[47]. The development of continual learning frameworks that 

enable LLMs to refine planning strategies without catastrophic 

forgetting represents an important research direction. 

Figure 2 illustrates the iterative planning architecture enabling 

LLM-based autonomous agents. The cycle begins with goal 

specification, where natural language objectives are parsed into 

actionable targets. Task decomposition leverages the LLM's ability 

to generate hierarchical sub-goal structures. The action generation 

component produces executable steps, which interface with 

environments through tool APIs or simulation layers. Critically, 

the feedback processing loop enables plan revision based on 

execution outcomes, addressing a key limitation of open-loop 

planning approaches. The memory system maintains state across 

iterations, supporting coherent long-horizon planning. This 

architecture underlies recent advances in code generation, web 

navigation, and robotic task completion. 

5. Decision Making and Real-World Applications 

Decision making involves selecting actions from available 

alternatives based on preferences, constraints, and predicted 

outcomes. LLMs have been increasingly deployed as decision 

support systems and autonomous decision-makers across 

professional domains ranging from medicine to finance. The 

capacity to process vast unstructured information, synthesize 

multiple perspectives, and generate reasoned recommendations 

positions LLMs as valuable tools for complex decision scenarios. 

However, critical concerns regarding reliability, bias, and 

accountability necessitate careful consideration of appropriate use 

cases and deployment protocols. 

Table 1 synthesizes LLM decision support capabilities across five 

key application domains. Medical diagnosis achieves near-

physician accuracy on structured vignettes but faces hallucination 

risks in clinical deployment. Financial analysis demonstrates 

competitive returns in simulations while raising concerns about 

adversarial manipulation. Legal research shows strong 

performance on bar examinations but requires human oversight for 

citation verification. Scientific research enables novel hypothesis 

generation with laboratory automation integration. Education 

applications provide personalized instruction with variable 

effectiveness across subjects. Across domains, the pattern emerges 

of strong benchmark performance coupled with deployment 
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challenges related to reliability, explainability, and domain-specific 

validation requirements. 

Medical diagnosis and treatment recommendation represent high-

stakes decision domains where LLMs have shown promising but 

uneven capabilities. Research has demonstrated that LLMs can 

generate reasonable differential diagnoses from patient symptom 

descriptions, often matching or approaching physician 

performance on clinical vignettes [48]. The ability to synthesize 

information from patient histories, laboratory results, and medical 

literature enables comprehensive diagnostic reasoning. However, 

studies have also identified concerning error patterns including 

hallucinated medical facts, overlooked critical symptoms, and 

recommendations inconsistent with clinical guidelines. The lack of 

explicit uncertainty quantification and tendency toward 

overconfidence pose particular risks in medical contexts. 

Therapeutic decision support, where LLMs suggest treatment 

options and consider patient-specific factors, has been explored 

through both conversational interfaces and structured clinical 

decision support systems. Models can articulate reasoning about 

treatment trade-offs, potential side effects, and patient preference 

alignment [49]. Integration with clinical knowledge bases and drug 

interaction databases enhances safety and accuracy. Nonetheless, 

the opacity of LLM decision processes and difficulty explaining 

recommendations in terms of established medical reasoning 

frameworks complicate clinical adoption. 

Financial decision making including investment analysis, risk 

assessment, and portfolio management has attracted significant 

interest as an application domain for LLMs. Models have been 

employed to analyze earnings reports, news sentiment, and market 

trends to generate investment recommendations [50]. Research has 

shown that LLM-generated trading strategies can achieve 

competitive returns in simulated trading environments. The ability 

to process qualitative information from diverse textual sources 

complements traditional quantitative financial models. Related 

work in supply chain forecasting has demonstrated that causal-

aware multimodal transformers can effectively integrate textual 

sentiment, temporal patterns, and visual data while distinguishing 

genuine causal relationships from spurious correlations, offering a 

framework that could enhance LLM-based decision systems in 

operational planning contexts [51]. However, the susceptibility to 

market manipulation through adversarial inputs and unpredictable 

responses to novel market conditions raise concerns about real-

world deployment. 
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Credit risk assessment represents another financial application 

where LLMs process loan applications, financial documents, and 

alternative data sources to predict default probability. Studies have 

explored whether LLM-based credit models reduce bias compared 

to traditional scoring systems or inadvertently amplify 

demographic disparities. The interpretability challenges associated 

with LLM decisions complicate regulatory compliance in 

jurisdictions requiring explainable lending decisions. 

Legal decision support systems employing LLMs assist with case 

research, contract analysis, and legal strategy formulation. Models 

can identify relevant precedents, summarize case law, and suggest 

legal arguments based on fact patterns [52]. Research has 

investigated LLM performance on bar examination questions and 

legal reasoning tasks, finding competitive performance with human 

test-takers. However, the risk of hallucinated case citations and 

mischaracterization of legal principles necessitates careful human 

oversight. 

Scientific research decision making including hypothesis 

generation, experimental design, and literature synthesis represents 

an emerging application area for LLMs. Models can propose 

research directions by identifying gaps in existing literature and 

suggesting novel combinations of established concepts [53]. 

Automated experimental design frameworks employ LLMs to 

specify experimental parameters, predict outcomes, and 

recommend next experiments based on prior results. Integration 

with laboratory automation systems enables closed-loop scientific 

discovery where LLMs direct experimental campaigns. 

Education and personalized learning systems utilize LLMs for 

curriculum design, content recommendation, and adaptive 

instruction. Models can assess student understanding from written 

responses, identify misconceptions, and generate tailored 

explanations or practice problems [54]. Research has explored 

LLM-based intelligent tutoring systems that engage students in 

Socratic dialogue to guide learning. The effectiveness of these 

systems compared to human instruction varies across subject 

matter and student populations. 
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Table 1: Application domains for LLM decision support systems 

with associated capabilities, performance metrics, and deployment 

challenges. 

Human resource decisions including candidate screening, 

interview question generation, and performance evaluation have 

been proposed as LLM applications. Models can analyze resumes, 

assess candidate qualifications against job requirements, and 

generate structured interview guides. However, concerns about 

amplification of hiring biases, privacy violations, and 

dehumanization of employment decisions have prompted calls for 

strict limitations on automated HR systems [55]. 

Collaborative human-AI decision making frameworks attempt to 

leverage complementary strengths of human judgment and 

machine analysis. Research has investigated interaction protocols 

where LLMs provide preliminary analyses that humans review and 

refine [56]. The effectiveness of these collaborations depends on 

appropriate division of responsibilities, transparency of AI 

contributions, and mechanisms for human oversight. Studies have 

shown that human reliance on AI recommendations can be either 

insufficient, leading to underutilization of valuable insights, or 

excessive, resulting in automation bias and acceptance of 

erroneous suggestions. 

Ethical decision making frameworks for LLMs address challenges 

in aligning model behavior with human values across diverse 

cultural contexts. Research has explored encoding ethical 

principles such as utilitarianism, deontology, or virtue ethics into 

decision-making prompts [57]. The difficulty of specifying 

comprehensive value systems and handling value conflicts in 

complex scenarios remains a fundamental challenge. Participatory 

approaches involving diverse stakeholder input in defining 

acceptable AI decision criteria show promise for improving value 

alignment. 
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Decision transparency and explainability represent critical 

requirements for many applications, particularly in regulated 

domains or high-stakes contexts. LLMs can generate natural 

language explanations of their decisions, articulating the reasoning 

process and key factors influencing recommendations [58]. 

However, these explanations may not accurately reflect the model's 

actual decision process, instead constituting post-hoc 

rationalizations. Research on mechanistic interpretability aims to 

develop techniques for understanding genuine causal factors in 

LLM decisions. 

6. Challenges and Limitations 

Despite remarkable progress in LLM capabilities across reasoning, 

planning, and decision making, fundamental limitations constrain 

their viability as general purpose intelligence systems. 

Hallucination, the generation of fluent but factually incorrect 

information, represents perhaps the most widely recognized 

limitation. Models confidently assert false claims, fabricate 

citations, and generate plausible but nonsensical explanations. The 

mechanisms underlying hallucination likely involve both 

knowledge gaps where models lack information and 

representational confusion where models conflate similar concepts 

[59]. Research has explored various mitigation strategies including 

retrieval augmentation, uncertainty estimation, and adversarial 

training, but no approach eliminates hallucination entirely. 

Reasoning inconsistency manifests as variable performance across 

problem instances that should be equivalently difficult based on 

logical structure. Models may solve complex problems while 

failing on simpler variants, violating expected difficulty 

hierarchies. This brittleness suggests that LLM reasoning relies 

partially on superficial pattern matching rather than robust 

algorithmic procedures. Adversarial examples demonstrate how 

minimal perturbations to problem statements can dramatically 

affect model performance. The lack of guaranteed reasoning 

soundness limits applicability in domains requiring high reliability. 

Computational requirements for training and deploying LLMs 

raise practical and environmental concerns. Training state-of-the-

art models requires thousands of specialized hardware accelerators 

over extended periods, consuming substantial energy. The carbon 

footprint of training large models has prompted calls for more 

sustainable AI development practices [60]. Inference costs limit 

deployment scalability, particularly for real-time applications or 

resource-constrained environments. Research on model 
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compression, efficient architectures, and knowledge distillation 

aims to reduce computational demands while preserving 

capabilities. 

Data requirements for training general-purpose LLMs include 

massive text corpora that raise copyright, privacy, and data 

governance concerns. Web scraping practices that collect training 

data may violate intellectual property rights or capture personal 

information without consent. The composition of training corpora 

influences model capabilities and biases, with underrepresented 

perspectives and languages receiving less coverage. Curating high-

quality, diverse, and ethically sourced training data at the scale 

required for competitive LLMs presents ongoing challenges. 

Bias and fairness issues pervade LLM outputs, reflecting and 

sometimes amplifying societal biases present in training data. 

Models generate stereotypical associations, discriminatory content, 

and demographically skewed predictions. Research has 

documented bias across multiple dimensions including gender, 

race, age, and nationality. Debiasing techniques including filtered 

training data, adversarial training, and output post-processing show 

partial effectiveness but do not eliminate bias entirely. The 

interaction between multiple bias dimensions and context-

dependent manifestations complicates bias mitigation. 

Safety and alignment challenges arise from potential misuse of 

LLMs for generating misinformation, malicious code, or 

manipulative content. Ensuring that LLMs behave in accordance 

with human values and societal norms across diverse contexts 

remains an unsolved problem. Techniques such as reinforcement 

learning from human feedback (RLHF) have improved alignment 

but do not guarantee safe behavior in all scenarios. The difficulty 

of specifying complete and consistent value systems, combined 

with the challenge of robustly implementing such systems in large 

neural networks, presents ongoing research challenges. 

6. Conclusion 

This comprehensive review has examined LLMs as general 

purpose intelligence systems through the lens of three fundamental 

cognitive capabilities: reasoning, planning, and decision making. 

The analysis reveals that contemporary LLMs demonstrate 

remarkable and often unexpected competencies across diverse 

intellectual tasks that were traditionally thought to require 

specialized systems or extensive domain-specific training. The 

transformer architecture combined with massive-scale pre-training 
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has produced models capable of sophisticated language 

understanding, multi-step problem solving, and complex decision 

support that approach or exceed human performance on numerous 

benchmarks. 

In the domain of reasoning, LLMs exhibit substantial capabilities 

in mathematical problem-solving, logical inference, commonsense 

reasoning, and analogical thinking. CoT prompting and ICL have 

emerged as powerful techniques that unlock latent reasoning 

abilities without requiring model retraining. However, systematic 

inconsistencies, sensitivity to problem framing, and limitations in 

causal understanding reveal that these reasoning capabilities, while 

impressive, remain brittle and unreliable compared to human 

cognitive flexibility. The extent to which LLMs develop genuine 

understanding versus sophisticated pattern matching continues to 

be debated, with implications for appropriate application domains 

and future development directions. 

Planning and multi-step problem-solving capabilities in LLMs 

enable task decomposition, hierarchical goal structuring, and basic 

temporal reasoning. The integration of LLMs with external tools 

through RAG frameworks and autonomous agent architectures 

substantially expands their operational capabilities. Yet challenges 

in maintaining plan consistency, adapting to unexpected failures, 

and reasoning under uncertainty indicate that current planning 

mechanisms fall short of the robustness required for fully 

autonomous operation in complex real-world environments. 

Hybrid approaches combining LLM flexibility with formal 

planning algorithms show promise but require further 

development. 

Decision-making applications across medicine, finance, law, 

science, and education demonstrate the practical value of LLMs as 

decision support tools. Their ability to synthesize vast amounts of 

unstructured information and generate reasoned recommendations 

provides genuine utility for human decision-makers. However, 

issues including hallucination, bias amplification, lack of 

transparency, and uncertain reliability necessitate careful human 

oversight and limit applicability in high-stakes contexts. 

Collaborative human-AI frameworks that leverage complementary 

strengths while maintaining human agency and accountability 

represent the most prudent near-term deployment strategy. 

Fundamental challenges including computational costs, data 

requirements, reasoning inconsistency, and alignment difficulties 

constrain the trajectory toward general purpose intelligence. While 
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scaling has driven substantial capability improvements, questions 

remain about whether current architectures and training paradigms 

can overcome inherent limitations in causal understanding, 

grounded meaning, and systematic generalization. Future research 

directions include developing more efficient architectures, 

improving reasoning robustness through neurosymbolic 

integration, enhancing transparency through mechanistic 

interpretability, and advancing alignment techniques to ensure safe 

and beneficial AI systems. 

The question of whether LLMs represent a path toward AGI or 

merely sophisticated statistical pattern matchers remains 

unresolved. Evidence suggests a nuanced reality where these 

systems exhibit genuine intellectual capabilities that constitute a 

valid form of machine intelligence, while simultaneously lacking 

aspects of understanding and flexibility that characterize human 

cognition. Rather than viewing LLMs as either fully intelligent or 

merely mimicking intelligence, a more productive perspective 

recognizes them as powerful computational tools with distinctive 

strengths and limitations that differ from human cognitive 

architecture. 

Looking forward, the continued development of LLMs will likely 

focus on addressing current limitations through architectural 

innovations, improved training methodologies, and tighter 

integration with symbolic reasoning systems and external 

knowledge sources. The emergence of multimodal models, 

advances in continual learning, and development of more 

sophisticated evaluation frameworks will provide deeper insights 

into the capabilities and boundaries of this approach to artificial 

intelligence. Whether LLMs ultimately prove to be a stepping 

stone toward AGI or a powerful but fundamentally limited 

technology, their impact on AI research and practical applications 

has been transformative and will continue to shape the field for 

years to come. 
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