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Abstract: Quantum cryptography promises a paradigm shift in secure communications by
leveraging the principles of quantum mechanics. This article explores mathematical
frameworks central to quantum cryptographic protocols, such as linear algebra, Hilbert
spaces, quantum probability, and number theory. It focuses on the theoretical underpinnings
of key distribution, quantum security proofs, and error correction. The paper also highlights
how mathematical tools like entropic uncertainty relations, complexity theory, and operator
algebras underpin advancements in quantum cryptographic systems. These mathematical
approaches ensure not only the security but also the efficiency and scalability of next-
generation quantum communication networks.
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INTRODUCTION:

Quantum cryptography is a revolutionary field that employs quantum mechanics to achieve secure
communication. Unlike classical cryptographic methods based on computational assumptions, quantum
cryptography derives its security from the laws of physics, such as the no-cloning theorem and Heisenberg’s
uncertainty principle. The most prominent application is Quantum Key Distribution (QKD), particularly
the BB84 protocol, which guarantees secure exchange of keys even in the presence of an eavesdropper.
Mathematics plays an indispensable role in formalizing and analyzing these protocols. From quantum state
representation using Hilbert spaces to entropic uncertainty bounds and number-theoretic cryptanalysis,
various mathematical tools form the backbone of secure quantum systems. This paper investigates the
mathematical methodologies applied in quantum cryptography to enhance its theoretical soundness and
real-world implementation.

1.Hilbert Spaces and Quantum State Representation:

In quantum mechanics—and consequently in quantum cryptography—a Hilbert space is the primary
mathematical structure that represents the complete state space of a quantum system. Denoted typically by
o, a Hilbert space is a complete vector space over the complex numbers that is equipped with an inner
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product. This structure allows for the notions of angle, length, orthogonality, and convergence—all
essential in the physical interpretation and manipulation of quantum states.

Quantum States as Vectors:

A quantum state is represented by a unit vector |y) € . The squared magnitude of the inner product
between two states, say (¢|y), gives the probability of measuring the state [y) as |¢), in accordance with
the Born rule. This probabilistic feature is foundational to quantum uncertainty and thus critical in
cryptographic protocols like BB84, where eavesdropping can be detected by observing deviations in
measurement statistics.

Superposition Principle:

Unlike classical bits, which exist in definite states (0 or 1), quantum bits or qubits can exist in
superpositions of these states:

[w)=al0)+pI1),where|a|2+|B|2=1.|\psi\rangle = \alpha|O\rangle + \beta|l\rangle,\quad \text{where} \quad
N\alpha|*2 + |\beta|*2 = 1.|y)=al0)+p[1),where|al2+|B[2=1.

This superposition, modeled through linear combinations in Hilbert space, is the source of quantum
parallelism, allowing qubits to encode and process vast information simultaneously. In quantum
communication, different superpositions represent distinct encoding schemes that are fundamentally
unbreakable due to quantum no-cloning.

Measurement and Basis Choice:

Quantum measurement is performed by projecting a state [y) onto an orthonormal basis in Hilbert space.
In the context of quantum key distribution:

The computational basis: |0) and |1)

The diagonal basis: [+) = (|0) + |1))/\/2, -y =(0) — |1))/\/2

These bases are mutually unbiased, and measuring a state in the wrong basis results in a probabilistic
outcome. This property is exploited in QKD to detect an eavesdropper: unauthorized measurements disturb
the state, introducing errors that are visible in statistical analysis.

Operators and Observables:

Operators acting on Hilbert spaces—particularly linear, unitary, and Hermitian operators—play a vital
role in both quantum mechanics and cryptography.

Hermitian operators correspond to measurable quantities (observables), with real eigenvalues
representing possible measurement outcomes.

Unitary operators model the evolution of closed quantum systems and quantum gates in protocols,
preserving the state norm:

UtU=L.UMNdagger U = L.UTU=L.

In quantum circuits, such as those implementing the BB84 or B92 protocols, these operators transform
quantum states in preparation, transmission, and decoding stages.

Entanglement and Tensor Product Spaces:

The tensor product of two or more Hilbert spaces describes composite quantum systems. For qubits A
and B with state spaces 4 and & b, the joint system resides in & @ & b. This framework supports
entangled states, like Bell states, which have no classical counterpart:

[D+)=12(]00)+|11)).\Phi*H\rangle = \frac {1} {\sqrt{2} } (J00\rangle + |1 1\rangle).|D+)=21(|00)+]|11}).
Such entanglement is exploited in protocols like E91 and quantum teleportation, where shared entangled
pairs enable secure communication without transferring the actual key through a channel—mathematically
grounded in the non-factorizability of tensor product vectors.

Security via Mathematical Rigour:
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The security of quantum cryptographic protocols is mathematically proven using entropic uncertainty
principles, trace distance, fidelity, and completely positive trace-preserving maps (CPTP maps). For
instance, the trace distance between two quantum states p and c:

D(p,0)=12Trlp—cID(p, 6) = \frac{1} {2} \text{Tr}|\rho - \sigma|D(p,5)=21Trlp—c]

gives a bound on the distinguishability of the states, thereby directly informing eavesdropper detectability.
Hilbert space theory also underpins quantum error correction codes, such as Shor’s code and CSS codes,
which protect quantum information against decoherence by distributing information redundantly across
subspaces of the Hilbert space.

In essence, Hilbert spaces are the canvas upon which all of quantum cryptography is painted. They encode
not only the probabilistic nature of quantum states and measurement but also support operations essential
to secure key exchange, entanglement, and protocol verification. The abstract yet powerful language of
functional analysis, linear algebra, and operator theory ensures that the security offered by quantum
cryptography is not just conceptual but rigorously quantifiable.

2.Mathematical Foundations of Quantum Key Distribution (QKD):

Quantum Key Distribution (QKD) operates on the principle that any attempt to observe or intercept
quantum information inevitably disturbs it—a direct consequence of quantum measurement theory and
the no-cloning theorem. The mathematical architecture of QKD is built using elements of linear
algebra, quantum probability, and Hilbert space theory. These provide rigorous tools for modeling
quantum states, quantum operations, and measurement processes, enabling QKD to achieve information-
theoretic security.

BB84 Protocol: A Linear Algebraic Interpretation:

The BB84 protocol is the earliest and most widely studied QKD scheme. Mathematically, the protocol
utilizes a 2-dimensional complex Hilbert space C2\mathbb{C}"2C2, the state space of a single qubit.
Alice prepares qubits in one of four possible states:

In the computational (Z) basis:

[0)=[10],I1)=[01]|0) = \begin {bmatrix } 1\\O\end {bmatrix}, \quad |1) =

\begin{bmatrix } 0\\1\end {bmatrix } |0)=[10],I1)=[01]

In the diagonal (X) basis:

[+)=12(10)+11)),I-)=12(10)—1))|+) = Mfrac{1}{\sqrt{2}}(]0) + |1}), \quad |-) = \frac{1}{\sqrt{2}}(|0) -
[IDIH)=21(10)+11)),1-)=21(10)—I1))

These are orthonormal vectors in C2\mathbb{C}"2C2, and the sets {|0),|1)}\{|0), [1)\}{[0},|1)} and
{I+) =)+, -0 {I+),]-)} are mutually unbiased bases (MUBs), meaning that measurement in the
wrong basis gives completely random outcomes.

When Bob receives a qubit, he randomly selects a measurement basis and applies a projective
measurement, which is mathematically modeled by Hermitian projection operators such as:
P0=10)(0|=[1000],P1=]1){1|=[0001].P_0 = |O\rangle\langle0] = \begin{bmatrix}1 & O\0 &
O\end{bmatrix}, \quad P_1 = |I\rangle\langlel| = \begin{bmatrix}0 & O0W\0 & I\end{bmatrix}.P0O
=[0){0|=[1000],P1=[1)}{1|=[0001].

The probability of measurement outcome is given by the Born rule:

Pri/oi(result |¢) from state |y))=I(dly)I2.\Pr(\text {result } |\phi\rangle \text{ from state } |\psi\rangle) =
Nangle\phi[\psi\rangle|*2.Pr(result |¢) from state [y))=I(dIy}I2.

For example, the probability that Bob gets outcome [+) when Alice sends |0) is [{+]0)|2=]1212=0.5\langle
+|0 \rangle|*2 = \left|\frac {1} {\sqrt{2} }\right|*2 = 0.5](+]0)|2=212=0.5, showing maximum uncertainty
between incompatible bases.
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After the quantum transmission, Alice and Bob perform basis reconciliation over a public classical channel
and retain only the results where their bases matched. The security of this scheme is validated through
statistical sampling and error rate estimation, mathematically analyzed using Shannon entropy, mutual
information, and trace distance to evaluate Eve’s potential knowledge.

E91 Protocol: Entanglement-Based QKD:

The E91 protocol, developed by Ekert, uses quantum entanglement rather than state preparation to
distribute secure keys. Entangled qubit pairs are generated in a Bell state, such as:
[D+)=12(]00)+I11)),\Phi*+\rangle = \frac {1} {\sqrt{2} } (|00\rangle + |1 1\rangle),|®+)=21(100)+[11)),
which lives in the tensor product space HAQHB=C2®C2=C4\mathcal{H} A ‘otimes \mathcal{H} B=
\mathbb {C}"2 \otimes \mathbb {C}"2 = \mathbb {C}"4HAXHB=C2QC2=C4. Each qubit is sent to Alice
and Bob, who perform measurements in randomly chosen bases. These measurements are modeled by
Hermitian operators corresponding to spin measurements in different directions on the Bloch sphere, often
described as:

A"=a"-c",B"=b"-c"\hat{A} = \vec{a} \cdot \vec{\sigma}, \quad \‘hat{B} = \vec{b} \cdot
\vec{\sigma},A"=a-c,B"=b-c,

where 6" \vec{\sigma}c is the vector of Pauli matrices and a”,b"\vec{a}, \vec{b}a,b are unit vectors defining
the measurement settings.

The correlation of measurement outcomes is computed and checked against the CHSH Bell inequality:
|[E(a,b)+E(a,b’)+E(a’,b)-E(a",b')|<2,JE(a, b) + E(a, b) + E(', b) - E(@', b)) \leq
2,|E(a,b)+E(a,b")+E(a’,b)—E(a’,b")|<2,

where E(a,b)E(a, b)E(a,b) is the expectation value of joint measurements. Quantum mechanics allows
violations of this inequality up to the Tsirelson bound of 2V2, confirming non-local correlations and ruling
out local hidden variable theories.

These violations serve a dual purpose: they confirm the presence of entanglement (and thus the security of
the shared key) and detect eavesdropping, since Eve’s interference would destroy the entanglement and
restore classical correlations that obey the Bell bound.

Probabilistic Models and Security Analysis:

In both protocols, probability distributions over quantum states and outcomes form the basis of security
analysis. Security is not just empirical but proven mathematically using:

Mutual Information: I(A:B)I(A:B)I(A:B) and I(A:E)I(A:E)I(A:E), where secure key generation requires
I(A:B)>I(A:E)I(A:B) > I(A:E)I(A:B)>I(A:E)

Shannon and von Neumann Entropy: measuring uncertainty and information leakage

Trace Distance and Fidelity: used to bound Eve’s ability to distinguish between different quantum states
The uncertainty principle ensures that the more Eve tries to gain information, the more errors she
introduces, which can be statistically detected. Privacy amplification and error correction are then
applied using classical linear codes and hash functions, modeled using finite field algebra.

The BB84 and E91 protocols embody how deep mathematical structures—vector spaces, probability
amplitudes, entanglement tensors, operator algebras, and statistical inequalities—combine to ensure
unconditional security in QKD. By grounding their functionality in the axioms of quantum mechanics and
expressing them through linear algebra and quantum probability theory, these protocols offer a blueprint
for future-proof cryptographic systems immune to both classical and quantum computational attacks.
3.Entropy, Uncertainty, and Security Proofs:

In quantum cryptography, entropy serves as a mathematical measure of information content, uncertainty,
and ultimately the security of a communication protocol. Unlike classical cryptography, which often
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assumes hardness based on computational infeasibility, quantum cryptographic security is provable,
rooted in the fundamental laws of physics, and quantified through information-theoretic measures. Chief
among these are von Neumann entropy, entropic uncertainty relations, Rényi entropy, and trace
distance, each playing a vital role in assessing and bounding the amount of information an eavesdropper
(Eve) can acquire and how distinguishable quantum states are.

Von Neumann Entropy: Quantum Information Content:

The von Neumann entropy, denoted S(p)S(\rho)S(p), is the quantum analog of Shannon entropy and
measures the uncertainty or mixedness of a quantum state described by a density matrix p\rhop. It is
defined as:

S(p)=Tr(plog /0}p),S(\rho) = -\mathrm { Tr} (\rho \log \rho),S(p)=—Tr(plogp),

where Tr\mathrm{Tr}Tr denotes the trace operation. If p\rhop is a pure state (i.e., p2=p\rho"2 =
\rhop2=p), then S(p)=0S(\rho) = 0S(p)=0, indicating no uncertainty. Conversely, a maximally mixed state
has maximum entropy, signaling full uncertainty.

In quantum cryptographic protocols like BB84, the von Neumann entropy of Eve’s state pE\rho EpE,
conditioned on Alice and Bob’s shared key, provides a bound on Eve’s knowledge. The lower the entropy,
the more Eve knows. Thus, by maximizing the conditional von Neumann entropy S(AIE)S(A[E)S(AIE),
one guarantees privacy amplification will successfully eliminate Eve’s information.

Entropic Uncertainty Relations:

Unlike classical uncertainty, quantum uncertainty is not just due to ignorance, but intrinsic to the system.
Entropic uncertainty relations generalize Heisenberg’s principle by expressing incompatibility of
observables through entropy.

For two non-commuting observables XXX and ZZZ, the Maassen—Uffink relation is:
H(X)+H(Z)>log/02(1c),H(X) + H(Z) \geq \log_2 \left(\frac {1} {c}\right),H(X)+H(Z)>log2(cl),

where HX)H(X)H(X) and H(Z)H(Z)H(Z) are the Shannon entropies of the measurement outcomes, and
c=max./0}i,jl(xilzj)|2c = \max_{i,j} \langle x_i | z_j \rangle|[*2c=maxi,jl(xilzj}|2 is the maximum overlap
between eigenvectors of the observables.

In quantum cryptography, entropic uncertainty relations with quantum side information are critical.
For instance, in the tripartite setting, where Alice, Bob, and Eve share a state pABE\rho {ABE}pABE,
Berta et al. (2010) extended the uncertainty relation to include Eve’s conditional knowledge:
H(XIE)+H(ZIB)>logi/o2(1c)+S(AIE),H(X|E) + H(ZB) \geq \log 2 \left(\frac{1}{c}\right) +
S(AJE),H(XIE)+H(ZIB)>log2(c1)+S(AIE),

which quantifies how much Eve’s knowledge (via her quantum memory) is limited by the amount of
uncertainty introduced in Alice’s and Bob’s measurements. This forms the basis of security proofs in
device-independent QKD.

Rényi Entropy: Smooth Bounds and Finite Key Analysis:

The Rényi entropy is a generalized entropy measure defined for a density matrix p\rhop and parameter
a=>0\alpha \geq 00>0, a#1\alpha \neq 1al1=1, as:

Ho(p)=11—-alog/oiTr(pa).H \alpha(\rho) = \frac{1}{l - \alpha} \log \mathrm{Tr}(\rho™alpha).Ho
(p)=1—allogTr(pa).

This family interpolates between various entropy measures:

H1(p)—H_1(\rho) \rightarrowH1(p)— von Neumann entropy

H2(p)—H_2(\rho) \rightarrowH2(p)— collision entropy

Hoo(p)—H_\infty(\rho) \rightarrowHoo(p)— min-entropy
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Smooth min-entropy, a variant of Rényi entropy, is widely used in finite-key security analysis. It
measures Eve’s maximum probability of correctly guessing the key:
Hmin{/o}e(X|E)=—logi/oimax/oicint{/0{L:pXE<A-IX®GE} H_{\min}\varepsilon(X|E) = -\log \max_\sigma
\inf \{ \lambda : \rho {XE} \leq \lambda \cdot \mathbb{I} X \otimes \sigma_ E \} ,Hming(X|E)=—logomax
inf{A:pXE<AIXQoGE},

where €\varepsilone is a smoothing parameter allowing for statistical fluctuations in finite-size datasets.
This entropy provides tight security bounds, especially when keys are generated from short or noisy
quantum transmissions.

Trace Distance: Distinguishability of Quantum States:

The trace distance D(p,c)D(\rho, \sigma)D(p,c) quantifies how distinguishable two quantum states p\rhop
and c\sigmago are:

D(p,0)=12Tr|p—cl|.D(\rho, \sigma) = \frac{1} {2} \mathrm{Tr} [\rho - \sigma|.D(p,c)=21Tr|p—ol.

This metric has an operational meaning: it gives the maximum probability that an observer (such as Eve)
can distinguish between the two states in a single-shot measurement. In cryptographic security proofs, it is
used to define the composability of security—that is, how the QKD protocol performs when integrated
with other cryptographic systems.

A key requirement is that the distance between the actual key state and the ideal key state (one that is
uniformly random and independent of Eve) be negligibly small, typically D<10—10D \leq 10"{-
10}D<10-10, ensuring universal composability.

The use of entropy and distance measures such as von Neumann entropy, entropic uncertainty
relations, Rényi entropy, and trace distance constitutes the mathematical core of quantum cryptographic
security analysis. These tools allow rigorous quantification of information leakage, error tolerance, and
key randomness, even in the presence of an adversary with quantum capabilities. Their application ensures
not only theoretical but also practical robustness of QKD protocols, especially under real-world conditions
involving noise, loss, and imperfect devices.

4.Quantum Error Correction and Linear Codes:

Quantum systems are inherently fragile, constantly exposed to noise from the surrounding environment,
which leads to decoherence—a loss of quantum information due to unintended interactions. To protect
quantum data, Quantum Error Correction (QEC) was developed, drawing deep mathematical inspiration
from classical coding theory, group theory, and linear algebra over finite fields. Unlike classical
systems, quantum error correction must preserve the superposition and entanglement of qubits while
respecting quantum constraints such as the no-cloning theorem, making the mathematical framework
significantly more complex and elegant.

From Classical to Quantum Codes: The Need for Structure:

In classical error correction, information is encoded using redundant bits so that errors can be detected
and corrected using linear codes over finite fields like F2\mathbb{F} 2F2. For example, a simple repetition
code (e.g., encoding a bit as 000 or 111) can correct single-bit flips using majority voting.

Quantum error correction generalizes this idea by encoding a logical qubit into a higher-dimensional
Hilbert space of physical qubits, using carefully constructed quantum codes that preserve quantum
coherence. However, errors in quantum systems include more than just bit-flips (X errors); they also include
phase-flips (Z errors) and combined bit-and-phase errors (Y errors). These are described using Pauli
matrices:
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X=[0110],Z=[100—1],Y=1XZ=[0-1i0].X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix},\quad Z =
\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},\quad Y = iXZ = \begin{bmatrix} 0 & -i \ i1 & 0
\end {bmatrix }.X=[0110],Z=[100—1],Y=1XZ=[0i—i0].

The full set of quantum errors forms a group known as the Pauli group, Pn\mathcal {P} nPn, on nnn qubits.
QEC operates by detecting and correcting elements of this group using structured quantum codes.
Stabilizer Codes: Algebraic Backbone of QEC

A highly successful class of quantum codes is the stabilizer code, introduced by Daniel Gottesman. These
are defined algebraically using commuting subgroups of the nnn-qubit Pauli group. Formally, a stabilizer
code is the common +1 eigenspace of an abelian subgroup ScPn\mathcal {S} \subset \mathcal {P} nScPn
, such that:

S=(gl,g2,...,gn—k),where gi€Pn.\mathcal {S} =\langle g 1, g 2, ..., g {n-k} \rangle, \quad \text{where }
g i\in \mathcal{P} n.S=(gl,g2,...,gn—k),where gi€Pn.

Each generator gig_igi acts as a parity check on the encoded state. The code encodes kkk logical qubits into
nnn physical qubits, and the code space is:

C={ly)e(C2)Qn:gily)=|y),Vi} \mathcal {C} = \{ |\psi\rangle \in (\mathbb{C}"2)*{\otimes n} : g i
[\psi\rangle = [\psi\rangle, \forall i \} .C={|y)E(C2)Q@n:gily)=|y),Vi}.

When an error EEE acts on the system, it either commutes or anti-commutes with the stabilizers. By
measuring the eigenvalues £1\pm 1+1 of each gig igi, a syndrome is obtained that uniquely identifies the
type and location of the error—without collapsing the quantum state. The process of finding the error based
on the syndrome and correcting it is mathematically isomorphic to solving systems of equations over
F2\mathbb{F} 2F2.

Role of Finite Fields and Binary Linear Codes

To bridge classical coding and quantum error correction, Calderbank-Shor-Steane (CSS) codes use
classical binary linear codes over the field F2\mathbb{F} 2F2. These codes satisfy certain inclusion
conditions:

Let C1C _1C1 and C2C_2C2 be classical codes such that C2LSC1C_2"perp \subseteq C_ 1C2LCC1.
Then the CSS construction encodes logical qubits into quantum states by using C1C_1Cl1 to correct bit-flip
errors and C2C_2C2 to correct phase-flip errors.

For example, the famous Shor code encodes 1 logical qubit into 9 physical qubits using a combination of
repetition and phase encoding, protecting against arbitrary single-qubit errors. This approach heavily relies
on algebra over finite fields, as error operators are mapped to binary vectors, and commutation relations
are preserved through symplectic geometry on vector spaces over F22n\mathbb{F} 2"{2n}F22n.

Group Theory in Quantum Codes and Error Analysis

The structure of the Pauli group, its centralizers, and the use of normal subgroups play a central role
in determining;:

Which errors are detectable,

Which are correctable, and

What the dimension of the code space is.

In stabilizer codes, error operators EEPnE \in \mathcal {P} nE€Pn that commute with all stabilizers act
trivially or as logical operations on the encoded qubits. Those that anti-commute with one or more
stabilizers change the syndrome and can be detected and corrected. The use of group representation
theory further enables optimization of code parameters, error detection algorithms, and fault-tolerant circuit
designs.
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Advanced QEC frameworks, such as topological codes (e.g., the surface code), also rely on discrete group
symmetries embedded in the lattice structure, leveraging homology and cohomology theory for fault
tolerance.

Quantum error correction lies at the intersection of quantum mechanics, algebra, and coding theory,
where stabilizer codes serve as the central structure enabling robust communication in noisy quantum
environments. The Pauli group, finite fields, and linear algebra provide a powerful and elegant
framework for detecting and correcting decoherence-induced errors. Through these mathematical
constructs, quantum information can be protected, manipulated, and transmitted reliably, making scalable
quantum computing and secure quantum communication a tangible reality.

5.Computational Complexity and Quantum Cryptanalysis:

As quantum computing progresses from theory to experimental realization, it poses profound implications
for the field of cryptography. Classical cryptosystems such as RSA, ECC (Elliptic Curve Cryptography),
and DH (Diffie-Hellman) rely on hardness assumptions rooted in classical computational complexity,
such as the difficulty of factoring large integers or computing discrete logarithms. These are intractable
for classical computers, belonging to the class of problems believed to be outside P (polynomial time).
However, the emergence of quantum algorithms that can solve such problems efficiently has necessitated
a paradigm shift, giving rise to the field of quantum cryptanalysis and post-quantum cryptography.
Hardness Assumptions in Post-Quantum Cryptography:

Post-quantum cryptography (PQC) aims to develop cryptographic protocols that are secure even in the
presence of quantum adversaries. These systems rely on problems that are presumed hard for both
classical and quantum computers. The key hardness assumptions include:

Lattice-based problems: Learning With Errors (LWE), Shortest Vector Problem (SVP), and Ring-LWE.
Code-based problems: Syndrome decoding problem.

Multivariate quadratic equations: Solving systems over finite fields.

Hash-based schemes: Resistance to collision and pre-image attacks.

These problems are believed to resist quantum attacks because no polynomial-time quantum algorithm
has been found to solve them efficiently. In contrast to factoring, which is efficiently solvable via Shor’s
algorithm, lattice problems remain NP-hard under both classical and quantum paradigms.

Quantum Algorithms and Their Mathematical Models:

Quantum algorithms harness quantum phenomena—superposition, entanglement, interference—to
perform computations in fundamentally new ways. Two of the most influential algorithms in quantum
cryptanalysis are:

Shor’s Algorithm (Integer Factoring and Discrete Logarithms):

Peter Shor’s algorithm (1994) is a quantum algorithm that factors large integers and computes discrete
logarithms in polynomial time, thereby breaking the security of RSA, DSA, and ECC.

Mathematical Model: Shor’s algorithm reduces factoring to a period-finding problem, which is
efficiently solvable using the Quantum Fourier Transform (QFT):

QFT(Ix))=IN> y=0N—1e2mixy/Nl|y).QFT(|x\rangle) = \frac{1} {\sqrt{N}} \sum_{y=0}"{N-1} e*{2\pi i x
y / N} [y\rangle.QFT(|x))=N1y=0> N—1e2zixy/Nly).

The algorithm constructs a modular exponentiation function f(x)=axmod Nf(x) = a”x \mod
Nf(x)=axmodN, where NNN is the number to be factored.

By computing the period r of this function using QFT, the algorithm deduces the factors of NNN with high
probability.
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Complexity: O((log/0N)3)O((\log N)*3)O((logN)3), exponential speed-up over the best-known classical
factoring algorithms (e.g., general number field sieve).

This undermines the computational assumption that factoring is hard—upon which RSA and DH are
based.

Grover’s Algorithm (Search Problem Acceleration):

Lov Grover’s algorithm (1996) provides a quadratic speed-up for unstructured search problems.
Problem: Given a function f:{0,1}n—{0,1}f: \{0,1\}"n \rightarrow \{0,1\}f:{0,1}n—{0,1}, find an input
xxx such that f(x)=1f(x) = 1f(x)=1.

Classical complexity: O(2n)O(2*n)O(2n) in worst-case.

Quantum complexity: O(2n/2)0O(2*{n/2})O(2n/2), using amplitude amplification.

Mathematically, Grover’s algorithm is a rotation in Hilbert space, increasing the amplitude of the correct
solution through iterations of the Grover operator:

G=QlyXvyI-D-(I-2Ix*){x*]),G = (2|\psi\rangle\langle\psi] - 1) \cdot (I - 2|x"*\rangle\langle
X)), G=2Iy N y1=D)-(I=2]x+)(x*l),

where [y)|\psi\rangle|y) is the uniform superposition and |x*)[x"*\rangle|x*) is the marked solution.
While Grover’s algorithm does not threaten public-key cryptography directly, it reduces the effective key
strength of symmetric algorithms. For example, AES-256 offers only 128-bit security against quantum
attacks, necessitating longer keys to preserve desired security levels.

Implications for Cryptographic Design:

Quantum cryptanalysis, grounded in algorithmic complexity theory, compels a complete re-evaluation of
cryptographic systems. Its implications are threefold:

Breaking Traditional Systems: Algorithms like RSA and ECC become insecure with sufficiently
powerful quantum computers.

Redesigning Secure Protocols: Post-quantum schemes must resist both known quantum and classical
attacks.

Hybrid Cryptographic Models: Combining classical and post-quantum methods during transition periods.
Modern cryptographic security definitions must consider quantum adversaries, modeled as bounded-
error quantum polynomial-time (BQP) machines. Security proofs must thus be adapted to quantum-
accessible oracles and superposition queries, which introduces complexity in modeling adversarial
behavior.

The interplay between computational complexity theory and quantum cryptanalysis defines the future
of secure digital infrastructure. While quantum algorithms like Shor’s and Grover’s reveal vulnerabilities
in classical systems, the field of post-quantum cryptography is rapidly developing mathematically
grounded, quantum-resistant schemes. A deep understanding of quantum algorithmic complexity—
anchored in Fourier analysis, group theory, finite fields, and Hilbert space dynamics—is essential to
building cryptosystems that can withstand both classical and quantum threats.

Mathematical Frameworks in Quantum Cryptography
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6 Mathematical Frameworks Iin Quantum Cryptography
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Summary:

Quantum cryptography represents a mathematically rigorous approach to achieving secure
communications. This article has reviewed key mathematical tools, including Hilbert spaces, entropy
measures, and complexity theory, that underpin quantum cryptographic systems. Theoretical models not
only validate the security of protocols like QKD but also help design error correction mechanisms essential
for real-world deployment. As quantum technologies evolve, integrating more advanced mathematical
methods will be critical to address emerging challenges in quantum information security. The fusion of
quantum physics and mathematics continues to pave the way for unbreakable encryption and a secure digital
future.
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